BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29335600)

  • 21. Membrane aging during cell growth ascertained by Laurdan generalized polarization.
    Parasassi T; Di Stefano M; Ravagnan G; Sapora O; Gratton E
    Exp Cell Res; 1992 Oct; 202(2):432-9. PubMed ID: 1397095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capacitation-associated changes in membrane fluidity in asthenozoospermic human spermatozoa.
    Buffone MG; Doncel GF; Calamera JC; Verstraeten SV
    Int J Androl; 2009 Aug; 32(4):360-75. PubMed ID: 18399983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of Cell Membrane Fluidity by Laurdan GP: Fluorescence Spectroscopy and Microscopy.
    Scheinpflug K; Krylova O; Strahl H
    Methods Mol Biol; 2017; 1520():159-174. PubMed ID: 27873252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of steady-state laurdan fluorescence to detect changes in liquid ordered phases in human erythrocyte membranes.
    Vest R; Wallis R; Jensen LB; Haws AC; Callister J; Brimhall B; Judd AM; Bell JD
    J Membr Biol; 2006 May; 211(1):15-25. PubMed ID: 16988865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualizing membrane microdomains by Laurdan 2-photon microscopy.
    Gaus K; Zech T; Harder T
    Mol Membr Biol; 2006; 23(1):41-8. PubMed ID: 16611579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laurdan Discerns Lipid Membrane Hydration and Cholesterol Content.
    Orlikowska-Rzeznik H; Krok E; Chattopadhyay M; Lester A; Piatkowski L
    J Phys Chem B; 2023 Apr; 127(15):3382-3391. PubMed ID: 37021971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A two-photon fluorescent probe for lipid raft imaging: C-laurdan.
    Kim HM; Choo HJ; Jung SY; Ko YG; Park WH; Jeon SJ; Kim CH; Joo T; Cho BR
    Chembiochem; 2007 Mar; 8(5):553-9. PubMed ID: 17300111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C-Laurdan: Membrane Order Visualization of HEK293t Cells by Confocal Microscopy.
    Meehan SD; Hayter C; Bhattacharya SK
    Methods Mol Biol; 2023; 2625():353-364. PubMed ID: 36653657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral Phasor Analysis of Nile Red Identifies Membrane Microenvironment Changes in the Presence of Amyloid Peptides.
    Jayawardena BM; Menon R; Jones MR; Jones CE
    Cell Biochem Biophys; 2023 Mar; 81(1):19-27. PubMed ID: 36203076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes.
    Danylchuk DI; Sezgin E; Chabert P; Klymchenko AS
    Anal Chem; 2020 Nov; 92(21):14798-14805. PubMed ID: 33044816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease.
    Sameni S; Syed A; Marsh JL; Digman MA
    Sci Rep; 2016 Oct; 6():34755. PubMed ID: 27713486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multidimensional phasor approach reveals LAURDAN photophysics in NIH-3T3 cell membranes.
    Malacrida L; Jameson DM; Gratton E
    Sci Rep; 2017 Aug; 7(1):9215. PubMed ID: 28835608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raman spectroscopy and partial least squares analysis in discrimination of peripheral cells affected by Huntington's disease.
    Muratore M
    Anal Chim Acta; 2013 Sep; 793():1-10. PubMed ID: 23953200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasma membrane polarity of polymorphonuclear leucocytes from children with primary ciliary dyskinesia.
    Fiorini R; Littarru GP; Coppa GV; Kantar A
    Eur J Clin Invest; 2000 Jun; 30(6):519-25. PubMed ID: 10849021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laurdan fluorescence spectroscopy reveals a single liquid-crystalline lipid phase and lack of thermotropic phase transitions in the plasma membrane of living human sperm.
    Palleschi S; Silvestroni L
    Biochim Biophys Acta; 1996 Mar; 1279(2):197-202. PubMed ID: 8603087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes.
    de la Haba C; Palacio JR; Palkovics T; Szekeres-Barthó J; Morros A; Martínez P
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):148-57. PubMed ID: 23954806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
    Vanounou S; Pines D; Pines E; Parola AH; Fishov I
    Photochem Photobiol; 2002 Jul; 76(1):1-11. PubMed ID: 12126299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids.
    Levitan I
    Curr Top Membr; 2021; 88():235-256. PubMed ID: 34862028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach.
    Yu W; So PT; French T; Gratton E
    Biophys J; 1996 Feb; 70(2):626-36. PubMed ID: 8789081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non steroidal anti-inflammatory drugs modulate the physicochemical properties of plasma membrane in experimental colorectal cancer: a fluorescence spectroscopic study.
    Vaish V; Sanyal SN
    Mol Cell Biochem; 2011 Dec; 358(1-2):161-71. PubMed ID: 21725642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.