BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29335600)

  • 41. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
    Bagatolli LA; Gratton E; Fidelio GD
    Biophys J; 1998 Jul; 75(1):331-41. PubMed ID: 9649390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages.
    de la Haba C; Palacio JR; Martínez P; Morros A
    Biochim Biophys Acta; 2013 Feb; 1828(2):357-64. PubMed ID: 22940500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimized time-gated generalized polarization imaging of Laurdan and di-4-ANEPPDHQ for membrane order image contrast enhancement.
    Owen DM; Gaus K
    Microsc Res Tech; 2010 Jun; 73(6):618-22. PubMed ID: 19937746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope.
    Dodes Traian MM; Flecha FLG; Levi V
    J Lipid Res; 2012 Mar; 53(3):609-616. PubMed ID: 22184757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laurdan in live cell imaging: Effect of acquisition settings, cell culture conditions and data analysis on generalized polarization measurements.
    Pokorna S; Ventura AE; Santos TCB; Hof M; Prieto M; Futerman AH; Silva LC
    J Photochem Photobiol B; 2022 Mar; 228():112404. PubMed ID: 35196617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types.
    Parasassi T; Loiero M; Raimondi M; Ravagnan G; Gratton E
    Biochim Biophys Acta; 1993 Dec; 1153(2):143-54. PubMed ID: 8274484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cells immersed in collagen matrices show a decrease in plasma membrane fluidity as the matrix stiffness increases.
    Aguilar J; Malacrida L; Gunther G; Torrado B; Torres V; Urbano BF; Sánchez SA
    Biochim Biophys Acta Biomembr; 2023 Oct; 1865(7):184176. PubMed ID: 37328024
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-gated total internal reflection fluorescence spectroscopy (TG-TIRFS): application to the membrane marker laurdan.
    Schneckenburger H; Stock K; Strauss WS; Eickholz J; Sailer R
    J Microsc; 2003 Jul; 211(Pt 1):30-6. PubMed ID: 12839548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime.
    Eckmann J; Clemens LE; Eckert SH; Hagl S; Yu-Taeger L; Bordet T; Pruss RM; Muller WE; Leuner K; Nguyen HP; Eckert GP
    Mol Neurobiol; 2014 Aug; 50(1):107-18. PubMed ID: 24633813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study.
    Wasif Baig M; Pederzoli M; Jurkiewicz P; Cwiklik L; Pittner J
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30011800
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of Laurdan fluorescence in studying plasma membrane organization of polymorphonuclear leukocytes during the respiratory burst.
    Fiorini R; Curatola G; Kantar A; Giorgi PL; Gratton E
    Photochem Photobiol; 1993 Mar; 57(3):438-41. PubMed ID: 8475176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The phasor FLIM method reveals a link between a change in energy metabolism and mHtt protein spread in healthy Mammalian cells when co-cultured with Huntington diseased cells.
    Sameni S; Zhang R; Digman MA
    Methods Appl Fluoresc; 2021 Jan; 9(1):. PubMed ID: 32235053
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane.
    Antollini SS; Barrantes FJ
    Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laurdan studies of membrane lipid-nicotinic acetylcholine receptor protein interactions.
    Antollini SS; Barrantes FJ
    Methods Mol Biol; 2007; 400():531-42. PubMed ID: 17951758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives.
    Osella S; Murugan NA; Jena NK; Knippenberg S
    J Chem Theory Comput; 2016 Dec; 12(12):6169-6181. PubMed ID: 27806200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells.
    Wiatr K; Szlachcic WJ; Trzeciak M; Figlerowicz M; Figiel M
    Mol Neurobiol; 2018 Apr; 55(4):3351-3371. PubMed ID: 28497201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.