These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 29335607)
1. Grid scale drives the scale and long-term stability of place maps. Mallory CS; Hardcastle K; Bant JS; Giocomo LM Nat Neurosci; 2018 Feb; 21(2):270-282. PubMed ID: 29335607 [TBL] [Abstract][Full Text] [Related]
2. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II. Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610 [TBL] [Abstract][Full Text] [Related]
3. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells. Pilly PK; Grossberg S J Cogn Neurosci; 2012 May; 24(5):1031-54. PubMed ID: 22288394 [TBL] [Abstract][Full Text] [Related]
4. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. Agmon H; Burak Y Elife; 2020 Aug; 9():. PubMed ID: 32779570 [TBL] [Abstract][Full Text] [Related]
6. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Aronov D; Nevers R; Tank DW Nature; 2017 Mar; 543(7647):719-722. PubMed ID: 28358077 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the position of an animal based on populations of grid and place cells: a comparative simulation study. Guanella A; Verschure PF J Integr Neurosci; 2007 Sep; 6(3):433-46. PubMed ID: 17933020 [TBL] [Abstract][Full Text] [Related]
8. The entorhinal map of space. Igarashi KM Brain Res; 2016 Apr; 1637():177-187. PubMed ID: 26940561 [TBL] [Abstract][Full Text] [Related]
10. Spatial cell firing during virtual navigation of open arenas by head-restrained mice. Chen G; King JA; Lu Y; Cacucci F; Burgess N Elife; 2018 Jun; 7():. PubMed ID: 29911974 [TBL] [Abstract][Full Text] [Related]
11. Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit. Li T; Arleo A; Sheynikhovich D Neural Netw; 2020 Jan; 121():37-51. PubMed ID: 31526953 [TBL] [Abstract][Full Text] [Related]
12. Impaired path integration and grid cell spatial periodicity in mice lacking GluA1-containing AMPA receptors. Allen K; Gil M; Resnik E; Toader O; Seeburg P; Monyer H J Neurosci; 2014 Apr; 34(18):6245-59. PubMed ID: 24790195 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic FPGA-based spatial navigation model with grid cells and place cells. Krishna A; Mittal D; Virupaksha SG; Nair AR; Narayanan R; Thakur CS Neural Netw; 2021 Jul; 139():45-63. PubMed ID: 33677378 [TBL] [Abstract][Full Text] [Related]
14. Spatial scale and place field stability in a grid-to-place cell model of the dorsoventral axis of the hippocampus. Lyttle D; Gereke B; Lin KK; Fellous JM Hippocampus; 2013 Aug; 23(8):729-44. PubMed ID: 23576417 [TBL] [Abstract][Full Text] [Related]
16. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map. Grossberg S; Pilly PK PLoS Comput Biol; 2012; 8(10):e1002648. PubMed ID: 23055909 [TBL] [Abstract][Full Text] [Related]
17. A Generalized Linear Model of a Navigation Network. Vinepinsky E; Perchik S; Segev R Front Neural Circuits; 2020; 14():56. PubMed ID: 33013326 [TBL] [Abstract][Full Text] [Related]
18. On the Organization of Grid and Place Cells: Neural Denoising via Subspace Learning. Schwartz DM; Koyluoglu OO Neural Comput; 2019 Aug; 31(8):1519-1550. PubMed ID: 31260389 [TBL] [Abstract][Full Text] [Related]
19. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations. Grossberg S; Pilly PK Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136 [TBL] [Abstract][Full Text] [Related]