These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29335691)

  • 1. Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations.
    Tian F; Yue T; Dong W; Yi X; Zhang X
    Phys Chem Chem Phys; 2018 Jan; 20(5):3474-3483. PubMed ID: 29335691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of the Formation, Interaction, and Evolution of Membrane Tubular Structures.
    Li S; Yan Z; Luo Z; Xu Y; Huang F; Zhang X; Yi X; Yue T
    Biophys J; 2019 Mar; 116(5):884-892. PubMed ID: 30795870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulling force and surface tension drive membrane fusion.
    Liu X; Tian F; Yue T; Zhang X; Zhong C
    J Chem Phys; 2017 Nov; 147(19):194703. PubMed ID: 29166098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness.
    Jaschonek S; Diezemann G
    J Chem Phys; 2017 Mar; 146(12):124901. PubMed ID: 28388162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulling nanotubes from supported bilayers.
    Armond JW; Macpherson JV; Turner MS
    Langmuir; 2011 Jul; 27(13):8269-74. PubMed ID: 21650171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From reversible to irreversible: When the membrane nanotube pearling is coupled with phase separation.
    Zhang X; Kang R; Liu Y; Yan Z; Xu Y; Yue T
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112160. PubMed ID: 34736219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic to continuum model for studying mechanical properties of RNA nanotubes.
    Badu S; Prabhakar S; Melnik R; Singh S
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):396-407. PubMed ID: 32116031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic sorting of lipids and proteins in multicomponent membranes.
    Jiang H
    Phys Rev Lett; 2012 Nov; 109(19):198101. PubMed ID: 23215429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum modeling of boron nitride nanotubes.
    Song J; Wu J; Huang Y; Hwang KC
    Nanotechnology; 2008 Nov; 19(44):445705. PubMed ID: 21832747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics.
    Booth JJ; Shalashilin DV
    J Phys Chem B; 2016 Feb; 120(4):700-8. PubMed ID: 26760898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F; Benz RW; White SH; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(47):24157-64. PubMed ID: 17125387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The constitutive equation for membrane tether extraction.
    Chen Y; Yao DK; Shao JY
    Ann Biomed Eng; 2010 Dec; 38(12):3756-65. PubMed ID: 20614242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsecond Simulations of the Diphtheria Toxin Translocation Domain in Association with Anionic Lipid Bilayers.
    Flores-Canales JC; Kurnikova M
    J Phys Chem B; 2015 Sep; 119(36):12074-85. PubMed ID: 26305016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.
    Raczyński P; Górny K; Dawid A; Gburski Z
    Arch Biochem Biophys; 2014 Jul; 554():6-10. PubMed ID: 24796224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear material and ionic transport through membrane nanotubes.
    Ivchenkov DV; Kuzmin PI; Galimzyanov TR; Shnyrova AV; Bashkirov PV; Frolov VA
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183677. PubMed ID: 34118214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2016 Apr; 49(6):946-952. PubMed ID: 26475220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of MD Simulations with Two-State Kinetic Rate Modeling Elucidates the Chain Melting Transition of Phospholipid Bilayers for Different Hydration Levels.
    Kowalik B; Schubert T; Wada H; Tanaka M; Netz RR; Schneck E
    J Phys Chem B; 2015 Nov; 119(44):14157-67. PubMed ID: 26439409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, dynamical, and thermodynamical properties of carbon nanotube polycarbonate composites: a molecular dynamics study.
    Chakraborty S; Roy S
    J Phys Chem B; 2012 Mar; 116(10):3083-91. PubMed ID: 22339407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.