These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29335710)

  • 1. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.
    Zhao C; Yang C
    Soft Matter; 2018 Feb; 14(6):1056-1066. PubMed ID: 29335710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
    Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and experimental investigation of the deviation of microparticles inside the microchannel using the vortices caused by the ICEK phenomenon.
    Ghadamgahi SME; Shahmardan MM; Nazari M; Mansouri H; Hashemi NN
    Electrophoresis; 2024 Apr; 45(7-8):720-734. PubMed ID: 38111364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advancement in induced-charge electrokinetic phenomena and their micro- and nano-fluidic applications.
    Feng H; Chang H; Zhong X; Wong TN
    Adv Colloid Interface Sci; 2020 Jun; 280():102159. PubMed ID: 32344205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced-charge electroosmotic trapping of particles.
    Ren Y; Liu W; Jia Y; Tao Y; Shao J; Ding Y; Jiang H
    Lab Chip; 2015 May; 15(10):2181-91. PubMed ID: 25828535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced-charge electrokinetics: fundamental challenges and opportunities.
    Squires TM
    Lab Chip; 2009 Sep; 9(17):2477-83. PubMed ID: 19680573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics.
    Tao Y; Liu W; Song C; Ge Z; Li Z; Li Y; Ren Y
    Electrophoresis; 2022 Nov; 43(21-22):2074-2092. PubMed ID: 36030405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.
    Calero V; Garcia-Sanchez P; Ramos A; Morgan H
    Biomicrofluidics; 2019 Sep; 13(5):054110. PubMed ID: 31673301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetically driven continuous-flow enrichment of colloidal particles by Joule heating induced temperature gradient focusing in a convergent-divergent microfluidic structure.
    Zhao C; Ge Z; Song Y; Yang C
    Sci Rep; 2017 Sep; 7(1):10803. PubMed ID: 28883550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Electrokinetic-Based Technique for the Isolation of Circulating Tumor Cells.
    Manshadi MKD; Saadat M; Mohammadi M; Sanati Nezhad A
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S; Qian S; Xuan X
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.
    Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH
    Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-valve using induced-charge electrokinetic motion of Janus particle.
    Daghighi Y; Li D
    Lab Chip; 2011 Sep; 11(17):2929-40. PubMed ID: 21769339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.