These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29335750)

  • 1. Force matching: motor effects that are not reported by the actor.
    Pawłowski M; Ricotta JM; De SD; Latash ML
    Exp Brain Res; 2024 Jun; 242(6):1439-1453. PubMed ID: 38652273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance.
    Parsa B; Terekhov A; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2017 Feb; 235(2):481-496. PubMed ID: 27785549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry.
    De SD; Ricotta JM; Benamati A; Latash ML
    J Neurophysiol; 2024 Feb; 131(2):152-165. PubMed ID: 38116603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of steady hand force production explored across spaces and methods of analysis.
    de Freitas PB; Freitas SMSF; Lewis MM; Huang X; Latash ML
    Exp Brain Res; 2018 Jun; 236(6):1545-1562. PubMed ID: 29564506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force illusions and drifts observed during muscle vibration.
    Reschechtko S; Cuadra C; Latash ML
    J Neurophysiol; 2018 Jan; 119(1):326-336. PubMed ID: 28978768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Levels of Neural Control Contributing to Performance-stabilizing Synergies in Multi-finger Tasks.
    Benamati A; Ricotta JM; De SD; Latash ML
    Neuroscience; 2024 Jul; 551():262-275. PubMed ID: 38838976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks.
    Keenan KG; Santos VJ; Venkadesan M; Valero-Cuevas FJ
    J Neurosci; 2009 Jul; 29(27):8784-9. PubMed ID: 19587285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual Feedback Processing of the Limb Involves Two Distinct Phases.
    Cross KP; Cluff T; Takei T; Scott SH
    J Neurosci; 2019 Aug; 39(34):6751-6765. PubMed ID: 31308095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging effects on sensorimotor integration: a comparison of effector systems and feedback modalities.
    Bronson-Lowe CR; Loucks TM; Ofori E; Sosnoff JJ
    J Mot Behav; 2013; 45(3):217-30. PubMed ID: 23611289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and variability of motor behavior in multifinger tasks: what variables does the brain use?
    Martin JR; Terekhov AV; Latash ML; Zatsiorsky VM
    J Mot Behav; 2013; 45(4):289-305. PubMed ID: 23742067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory weighting of position and force feedback during pinching.
    Geelen JE; van der Helm FCT; Schouten AC; Mugge W
    Exp Brain Res; 2023 Aug; 241(8):2009-2018. PubMed ID: 37382669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual feedback modulates the 1/f structure of movement amplitude time series.
    Slifkin AB; Eder JR
    PLoS One; 2023; 18(10):e0287571. PubMed ID: 37862315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittency of visual information and the frequency of rhythmical force production.
    Sosnoff JJ; Newell KM
    J Mot Behav; 2005 Jul; 37(4):325-34. PubMed ID: 15967757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Amount and Pattern of Reciprocal Compensations Predict Performance Stability in a Visually Guided Finger Force Production Task.
    Andrade V; Carver NS; Grover FM; Bonnette S; Silva PL
    Motor Control; 2024 Jun; ():1-22. PubMed ID: 38901830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor learning characterized by changing Lévy distributions.
    Cluff T; Balasubramaniam R
    PLoS One; 2009 Jun; 4(6):e5998. PubMed ID: 19543399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The size coding of responses: The size of switches and the force feedback.
    Heurley LP; Michalland A; Guerineau R; Thébault G
    Int J Psychol; 2024 Feb; 59(1):104-110. PubMed ID: 37848345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.
    Hasanbarani F; Reschechtko S; Latash ML
    Exp Brain Res; 2018 Mar; 236(3):779-794. PubMed ID: 29335750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.
    Reschechtko S; Hasanbarani F; Akulin VM; Latash ML
    Neuroscience; 2017 May; 350():94-109. PubMed ID: 28344070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the nature of unintentional action: a study of force/moment drifts during multifinger tasks.
    Parsa B; O'Shea DJ; Zatsiorsky VM; Latash ML
    J Neurophysiol; 2016 Aug; 116(2):698-708. PubMed ID: 27193319
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.