These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29336116)

  • 1. The retina of the collared peccary (Pecari tajacu): structure and function.
    Ezra-Elia R; Ross M; Avni-Magen N; Berkowitz A; Ofri R
    Vet Ophthalmol; 2018 Nov; 21(6):577-585. PubMed ID: 29336116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrary to popular belief, chinchillas do not have a pure rod retina.
    Sandalon S; Boykova A; Ross M; Obolensky A; Banin E; Ofri R
    Vet Ophthalmol; 2019 Jan; 22(1):93-97. PubMed ID: 29888430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the rhodopsin knockout mouse as a model of pure cone function.
    Jaissle GB; May CA; Reinhard J; Kohler K; Fauser S; Lütjen-Drecoll E; Zrenner E; Seeliger MW
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):506-13. PubMed ID: 11157890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ganglion cells and displaced amacrine cells density in the retina of the collared peccary (Pecari tajacu).
    Costa KHA; Gomes BD; Silveira LCL; Souza GDS; Martins ICVDS; Lacerda EMDCB; Rocha FAF
    PLoS One; 2020; 15(10):e0239719. PubMed ID: 33002017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system.
    Vinberg F; Kolesnikov AV; Kefalov VJ
    Vision Res; 2014 Aug; 101():108-17. PubMed ID: 24959652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina.
    Abd-El-Barr MM; Pennesi ME; Saszik SM; Barrow AJ; Lem J; Bramblett DE; Paul DL; Frishman LJ; Wu SM
    J Neurophysiol; 2009 Sep; 102(3):1945-55. PubMed ID: 19587322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone photoreceptors develop normally in the absence of functional rod photoreceptors in a transgenic swine model of retinitis pigmentosa.
    Fernandez de Castro JP; Scott PA; Fransen JW; Demas J; DeMarco PJ; Kaplan HJ; McCall MA
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2460-8. PubMed ID: 24618325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions.
    Bush RA; Tanikawa A; Zeng Y; Sieving PA
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3680-3688. PubMed ID: 31469895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat.
    Zhang H; Sajdak BS; Merriman DK; McCall MA; Carroll J; Lipinski DM
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):6. PubMed ID: 32492111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transretinal ERG recordings from mouse retina: rod and cone photoresponses.
    Kolesnikov AV; Kefalov VJ
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rod and S-cone driven ERG signals at high retinal illuminances.
    Kremers J; Czop D; Link B
    Doc Ophthalmol; 2009 Jun; 118(3):205-16. PubMed ID: 19101744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different effects of low Ca2+ on signal transmission from rods and cones to bipolar cells in carp retina.
    Xu HP; Yang XL
    Brain Res; 2002 Dec; 957(1):136-43. PubMed ID: 12443989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice.
    Gresh J; Goletz PW; Crouch RK; Rohrer B
    Vis Neurosci; 2003; 20(2):211-20. PubMed ID: 12916741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology.
    Das RG; Marinho FP; Iwabe S; Santana E; McDaid KS; Aguirre GD; Miyadera K
    Sci Rep; 2017 Oct; 7(1):12823. PubMed ID: 28993665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrospective evaluation of pre-surgical electroretinography results in a mixed-breed canine population presented for cataract removal surgery.
    Wegg ML; Pollard D; Ofri R
    Vet Ophthalmol; 2023 Mar; 26(2):145-154. PubMed ID: 35649104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences.
    Gongora J; Morales S; Bernal JE; Moran C
    Mol Phylogenet Evol; 2006 Oct; 41(1):1-11. PubMed ID: 16837218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.