These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29336851)

  • 1. Clinical Utility of Fetal Short-Lag Spatial Coherence Imaging.
    Long W; Hyun D; Choudhury KR; Bradway D; McNally P; Boyd B; Ellestad S; Trahey GE
    Ultrasound Med Biol; 2018 Apr; 44(4):794-806. PubMed ID: 29336851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V; Dahl J; Ellestad S; Trahey G
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-lag spatial coherence imaging of cardiac ultrasound data: initial clinical results.
    Lediju Bell MA; Goswami R; Kisslo JA; Dahl JJ; Trahey GE
    Ultrasound Med Biol; 2013 Oct; 39(10):1861-74. PubMed ID: 23932276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Short-Lag Spatial Coherence Imaging of Breast Ultrasound Data: Initial Clinical Results.
    Wiacek A; Rindal OMH; Falomo E; Myers K; Fabrega-Foster K; Harvey S; Lediju Bell MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):527-540. PubMed ID: 30507500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M; Trahey GE; Nelson RC; Dahl JJ
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
    Lediju Bell MA; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1265-76. PubMed ID: 26168173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Coherence Approaches to Distinguish Suspicious Mass Contents in Fundamental and Harmonic Breast Ultrasound Images.
    Sharma A; Oluyemi E; Myers K; Ambinder E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):70-84. PubMed ID: 37956000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
    Hyun D; Trahey GE; Jakovljevic M; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1101-12. PubMed ID: 24960700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J; Jakovljevic M; Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-lag spatial coherence of backscattered echoes: imaging characteristics.
    Lediju MA; Trahey GE; Byram BC; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1377-88. PubMed ID: 21768022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Sensitivity in Ultrasound Molecular Imaging With Coherence-Based Beamforming.
    Hyun D; Abou-Elkacem L; Perez VA; Chowdhury SM; Willmann JK; Dahl JJ
    IEEE Trans Med Imaging; 2018 Jan; 37(1):241-250. PubMed ID: 29293430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments.
    Jakovljevic M; Byram BC; Hyun D; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1113-22. PubMed ID: 24960701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
    Qi Y; Wang Y; Yu J; Guo Y
    Biomed Eng Online; 2019 Apr; 18(1):48. PubMed ID: 31014338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations.
    Morgan MR; Hyun D; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; ():. PubMed ID: 30908212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-lag spatial coherence combined with eigenspace-based minimum variance beamformer for synthetic aperture ultrasound imaging.
    Wang Y; Zheng C; Peng H; Chen X
    Comput Biol Med; 2017 Dec; 91():267-276. PubMed ID: 29102824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic aperture focusing for short-lag spatial coherence imaging.
    Bottenus N; Byram BC; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1816-26. PubMed ID: 24658715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.