These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29336954)

  • 1. High voltage fragmentation of composites from secondary raw materials - Potential and limitations.
    Leißner T; Hamann D; Wuschke L; Jäckel HG; Peuker UA
    Waste Manag; 2018 Apr; 74():123-134. PubMed ID: 29336954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crushing of large Li-ion battery cells.
    Wuschke L; Jäckel HG; Leißner T; Peuker UA
    Waste Manag; 2019 Feb; 85():317-326. PubMed ID: 30803586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-comminution of plastic waste.
    Gente V; La Marca F; Lucci F; Massacci P; Pani E
    Waste Manag; 2004; 24(7):663-72. PubMed ID: 15288298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stripping effect of using high voltage electrical pulses breakage for waste printed circuit boards.
    Duan C; Han J; Zhao S; Gao Z; Qiao J; Yan G
    Waste Manag; 2018 Jul; 77():603-610. PubMed ID: 29891416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries.
    He Y; Yuan X; Zhang G; Wang H; Zhang T; Xie W; Li L
    Sci Total Environ; 2021 Apr; 766():142382. PubMed ID: 33183828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery.
    Torabian MM; Jafari M; Bazargan A
    Waste Manag Res; 2022 Apr; 40(4):402-409. PubMed ID: 34060962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective separation of plastic LED lamp components using electrodynamic fragmentation for material recovery.
    Benmamas L; Bouzidi Y; Houset G; Nomenyo K; Bru K; Beaulieu M; Leclere P; Clerget L; Lerondel G
    Waste Manag; 2022 May; 144():210-220. PubMed ID: 35395506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite.
    Vieceli N; Nogueira CA; Guimarães C; Pereira MFC; Durão FO; Margarido F
    Waste Manag; 2018 Jan; 71():350-361. PubMed ID: 29030120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation.
    Song BP; Zhang MY; Fan Y; Jiang L; Kang J; Gou TT; Zhang CL; Yang N; Zhang GJ; Zhou X
    Waste Manag; 2020 Jan; 101():180-187. PubMed ID: 31622863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-coated plastics recycling by pulsed electric discharge.
    Yamashita T; Sakugawa T; Akiyama H; Hosano H
    Waste Manag; 2019 Apr; 89():57-63. PubMed ID: 31079759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.
    Li J; Wang G; Xu Z
    Waste Manag; 2016 Jun; 52():221-7. PubMed ID: 27021697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.
    Wang X; Gaustad G; Babbitt CW
    Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.