BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29337692)

  • 1. Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells.
    Bunik VI; Brand MD
    Biol Chem; 2018 Apr; 399(5):407-420. PubMed ID: 29337692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.
    Quinlan CL; Goncalves RL; Hey-Mogensen M; Yadava N; Bunik VI; Brand MD
    J Biol Chem; 2014 Mar; 289(12):8312-25. PubMed ID: 24515115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex.
    Goncalves RL; Bunik VI; Brand MD
    Free Radic Biol Med; 2016 Feb; 91():247-55. PubMed ID: 26708453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.
    Brand MD
    Free Radic Biol Med; 2016 Nov; 100():14-31. PubMed ID: 27085844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate.
    Nemeria NS; Gerfen G; Guevara E; Nareddy PR; Szostak M; Jordan F
    Free Radic Biol Med; 2017 Jul; 108():644-654. PubMed ID: 28435050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the hydrogen peroxide producing capacities of liver and cardiac mitochondria isolated from C57BL/6N and C57BL/6J mice.
    Oldford C; Kuksal N; Gill R; Young A; Mailloux RJ
    Free Radic Biol Med; 2019 May; 135():15-27. PubMed ID: 30794944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production.
    Goncalves RLS; Watson MA; Wong HS; Orr AL; Brand MD
    Redox Biol; 2020 Jan; 28():101341. PubMed ID: 31627168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Measurement of Superoxide/Hydrogen Peroxide and NADH Production by Flavin-containing Mitochondrial Dehydrogenases.
    Mailloux RJ; Young A; O'Brien M; Gill RM
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of superoxide/H2O2 during mitochondrial proline oxidation.
    Goncalves RL; Rothschild DE; Quinlan CL; Scott GK; Benz CC; Brand MD
    Redox Biol; 2014; 2():901-9. PubMed ID: 25184115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria.
    Slade L; Chalker J; Kuksal N; Young A; Gardiner D; Mailloux RJ
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1960-1969. PubMed ID: 28506882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2013 Mar; 1827(3):446-54. PubMed ID: 23313413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Both Generate Superoxide/H
    Jordan F; Nemeria N; Gerfen G
    Neurochem Res; 2019 Oct; 44(10):2325-2335. PubMed ID: 30847859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions.
    Wong HS; Dighe PA; Mezera V; Monternier PA; Brand MD
    J Biol Chem; 2017 Oct; 292(41):16804-16809. PubMed ID: 28842493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.
    O'Brien M; Chalker J; Slade L; Gardiner D; Mailloux RJ
    Free Radic Biol Med; 2017 May; 106():302-314. PubMed ID: 28242228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
    St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD
    J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes.
    Watson MA; Wong HS; Brand MD
    Biochem Soc Trans; 2019 Oct; 47(5):1461-1469. PubMed ID: 31506330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I
    Wong HS; Monternier PA; Brand MD
    Free Radic Biol Med; 2019 Nov; 143():545-559. PubMed ID: 31518685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The catabolism of branched-chain amino acids occurs via 2-oxoacid dehydrogenase in Saccharomyces cerevisiae.
    Dickinson JR; Dawes IW
    J Gen Microbiol; 1992 Oct; 138(10):2029-33. PubMed ID: 1479341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.