These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29337917)

  • 1. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera.
    Leeuw T; Boss E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Water Leaving Reflectance Using a Digital Camera Based on Multiple Reflectance Reference Cards.
    Gao M; Li J; Zhang F; Wang S; Xie Y; Yin Z; Zhang B
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33217939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration and validation of the HydroColor and Citclops smartphone applications for water quality monitoring.
    Mahama PN; Salama SM
    Heliyon; 2024 May; 10(9):e30100. PubMed ID: 38698965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Measuring the Spectrum of Extinction Coefficient and Reflectance for Cadmium Compounds from 400 to 900 nm].
    Liang YH; Deng RR; Liu YM; Lin L; Qin Y; He YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4006-12. PubMed ID: 30235510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smartphone-based turbidity reader.
    Ceylan Koydemir H; Rajpal S; Gumustekin E; Karinca D; Liang K; Göröcs Z; Tseng D; Ozcan A
    Sci Rep; 2019 Dec; 9(1):19901. PubMed ID: 31882742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term agroecosystem research in the central Mississippi river basin: hyperspectral remote sensing of reservoir water quality.
    Sudduth KA; Jang GS; Lerch RN; Sadler EJ
    J Environ Qual; 2015 Jan; 44(1):71-83. PubMed ID: 25602322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.
    Ouillon S; Douillet P; Petrenko A; Neveux J; Dupouy C; Froidefond JM; Andréfouët S; Muñoz-Caravaca A
    Sensors (Basel); 2008 Jul; 8(7):4165-4185. PubMed ID: 27879929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images.
    Su YF; Liou JJ; Hou JC; Hung WC; Hsu SM; Lien YT; Su MD; Cheng KS; Wang YF
    Sensors (Basel); 2008 Oct; 8(10):6321-6339. PubMed ID: 27873872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feasibility of monitoring wilderness lake chemistry with remote sensing methods.
    Vertucci FA
    Environ Monit Assess; 1989 Apr; 12(1):59. PubMed ID: 24249059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The multi-angle polarization spectral character of water and its applications in water color remote sensing].
    Wu TX; Yan L; Xiang Y; Zhao YS; Chen W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):448-52. PubMed ID: 20384143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative analysis of chlorophyll-a reflectance spectrum in red spectral region of water].
    Ma WD; Xing QG; Zhang YZ; Shi P; Liu YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):313-7. PubMed ID: 20384114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Experiments of a Water Color Remote Sensing-Oriented Unmanned Surface Vehicle.
    Li Y; Tian L; Li W; Li J; Wei A; Li S; Tong R
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments.
    Lee Z; Carder K; Arnone R; He M
    Sensors (Basel); 2007 Dec; 7(12):3428-3441. PubMed ID: 28903303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and application of a low-cost smartphone-based turbidimeter using scattered light.
    Bayram A; Yalcin E; Demic S; Gunduz O; Solmaz ME
    Appl Opt; 2018 Jul; 57(21):5935-5940. PubMed ID: 30118016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.
    Yang A; Zhong B; Wu S; Liu Q
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28117745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.
    Lee Z; Shang S; Hu C; Zibordi G
    Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Out-of-Band Response for the Coastal Zone Imager (CZI) Onboard China's Ocean Color Satellite HY-1C: Effect on the Observation Just above the Sea Surface.
    Cui T; Ding J; Jia F; Mu B; Liu R; Xu P; Liu J; Zhang J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.