These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29338227)

  • 1. Entangled Photonic-Nuclear Molecular Dynamics of LiF in Quantum Optical Cavities.
    Triana JF; Peláez D; Sanz-Vicario JL
    J Phys Chem A; 2018 Mar; 122(8):2266-2278. PubMed ID: 29338227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings.
    Kowalewski M; Bennett K; Mukamel S
    J Phys Chem Lett; 2016 Jun; 7(11):2050-4. PubMed ID: 27186666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Presence of Potential Crossings in Diatomics Induced by Quantum Cavity Radiation.
    Triana JF; Sanz-Vicario JL
    Phys Rev Lett; 2019 Feb; 122(6):063603. PubMed ID: 30822050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar diatomic molecules in optical cavities: Photon scaling, rotational effects, and comparison with classical fields.
    Triana JF; Sanz-Vicario JL
    J Chem Phys; 2021 Mar; 154(9):094120. PubMed ID: 33685158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Jan; 19(2):460-71. PubMed ID: 36625723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled dynamics at an avoided crossing interpreted in terms of dynamically fluctuating potential energy curves.
    Scheit S; Arasaki Y; Takatsuka K
    J Phys Chem A; 2012 Mar; 116(11):2644-53. PubMed ID: 22087788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH.
    Nikodem A; Levine RD; Remacle F
    J Phys Chem A; 2016 May; 120(19):3343-52. PubMed ID: 26928262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.
    Rodríguez-Lara BM; Soto-Eguibar F; Cárdenas AZ; Moya-Cessa HM
    Opt Express; 2013 May; 21(10):12888-98. PubMed ID: 23736508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dynamics and spectroscopy of dihalogens in solid matrices. I. Efficient simulation of the photodynamics of the embedded I
    Picconi D; Cina JA; Burghardt I
    J Chem Phys; 2019 Feb; 150(6):064111. PubMed ID: 30770011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent quantum wave-packet description of the 1pi sigma* photochemistry of phenol.
    Lan Z; Domcke W; Vallet V; Sobolewski AL; Mahapatra S
    J Chem Phys; 2005 Jun; 122(22):224315. PubMed ID: 15974676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-adiabatic dynamics of molecules in optical cavities.
    Kowalewski M; Bennett K; Mukamel S
    J Chem Phys; 2016 Feb; 144(5):054309. PubMed ID: 26851923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the photodynamics of azobenzene on its first excited state: comparison of full multiple spawning and surface hopping treatments.
    Toniolo A; Ciminelli C; Persico M; Martínez TJ
    J Chem Phys; 2005 Dec; 123(23):234308. PubMed ID: 16392921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved spectra of I
    Picconi D; Burghardt I
    Faraday Discuss; 2019 Dec; 221(0):30-58. PubMed ID: 31556416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons.
    Triana JF; Hernández FJ; Herrera F
    J Chem Phys; 2020 Jun; 152(23):234111. PubMed ID: 32571050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of non-classical cavity field states with snapshots of their decoherence.
    Deléglise S; Dotsenko I; Sayrin C; Bernu J; Brune M; Raimond JM; Haroche S
    Nature; 2008 Sep; 455(7212):510-4. PubMed ID: 18818653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes.
    Szidarovszky T; Halász GJ; Császár AG; Cederbaum LS; Vibók Á
    J Phys Chem Lett; 2018 Nov; 9(21):6215-6223. PubMed ID: 30296095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polariton Assisted Down-Conversion of Photons via Nonadiabatic Molecular Dynamics: A Molecular Dynamical Casimir Effect.
    Pérez-Sánchez JB; Yuen-Zhou J
    J Phys Chem Lett; 2020 Jan; 11(1):152-159. PubMed ID: 31820998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perturbation theoretic approach to the Riccati equation for the Floquet energies, spectral intensities, and cutoff energy of harmonic generation in photon emission from nonadiabatic electron-transfer dynamics driven by infrared CW laser fields.
    Mizuno Y; Arasaki Y; Takatsuka K
    J Chem Phys; 2016 Jan; 144(2):024106. PubMed ID: 26772553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.