BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29338248)

  • 1. Catalytic Oligopeptide Synthesis.
    Liu Z; Noda H; Shibasaki M; Kumagai N
    Org Lett; 2018 Feb; 20(3):612-615. PubMed ID: 29338248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design of an Organocatalyst for Peptide Bond Formation.
    Handoko ; Satishkumar S; Panigrahi NR; Arora PS
    J Am Chem Soc; 2019 Oct; 141(40):15977-15985. PubMed ID: 31508947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-catalysed synthesis of oligopeptide amides: comparison of catalytic efficiency among trypsins of different origin (bovine, Streptomyces griseus and chum salmon).
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    J Pept Sci; 2002 Sep; 8(9):521-8. PubMed ID: 12371705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New heterocyclic beta-sheet ligands with peptidic recognition elements.
    Rzepecki P; Gallmeier H; Geib N; Cernovska K; König B; Schrader T
    J Org Chem; 2004 Aug; 69(16):5168-78. PubMed ID: 15287758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.
    Mohy El Dine T; Erb W; Berhault Y; Rouden J; Blanchet J
    J Org Chem; 2015 May; 80(9):4532-44. PubMed ID: 25849872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less Is More: N(BOH)
    Opie CR; Noda H; Shibasaki M; Kumagai N
    Org Lett; 2023 Feb; 25(4):694-697. PubMed ID: 36662124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct N-acylation of sulfoximines with carboxylic acids catalyzed by the B
    Noda H; Asada Y; Shibasaki M; Kumagai N
    Chem Commun (Camb); 2017 Jul; 53(54):7447-7450. PubMed ID: 28569297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging methods in amide- and peptide-bond formation.
    Bode JW
    Curr Opin Drug Discov Devel; 2006 Nov; 9(6):765-75. PubMed ID: 17117685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary alkylboronic acids as highly active catalysts for the dehydrative amide condensation of α-hydroxycarboxylic acids.
    Yamashita R; Sakakura A; Ishihara K
    Org Lett; 2013 Jul; 15(14):3654-7. PubMed ID: 23802908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total synthesis of (-)-isatisine A.
    Patel P; Ramana CV
    J Org Chem; 2012 Dec; 77(23):10509-15. PubMed ID: 23153399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic, one-pot synthesis of beta-amino acids from alpha-amino acids. Preparation of alpha,beta-peptide derivatives.
    Saavedra C; Hernández R; Boto A; Alvarez E
    J Org Chem; 2009 Jul; 74(13):4655-65. PubMed ID: 19391617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide heterocycle conjugates: a diverted edman degradation protocol for the synthesis of N-terminal 2-iminohydantoins.
    Evindar G; Batey RA
    Org Lett; 2003 Apr; 5(8):1201-4. PubMed ID: 12688719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective Mn-mediated coupling of functionalized iodides and hydrazones: a synthetic entry to the tubulysin gamma-amino acids.
    Friestad GK; Marié JC; Deveau AM
    Org Lett; 2004 Sep; 6(19):3249-52. PubMed ID: 15355024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic asymmetric amination of N-nonsubstituted α-alkoxycarbonyl amides: concise enantioselective synthesis of mycestericin F and G.
    Berhal F; Takechi S; Kumagai N; Shibasaki M
    Chemistry; 2011 Feb; 17(6):1915-21. PubMed ID: 21274942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic dehydrative amide bond formation using aqueous ammonia: synthesis of primary amides utilizing diboronic acid anhydride catalysis.
    Takahashi N; Iwasawa H; Kinashi T; Makino K; Shimada N
    Chem Commun (Camb); 2023 Jun; 59(48):7391-7394. PubMed ID: 37232102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide bond formation by aminolysin-A catalysis: a simple approach to enzymatic synthesis of diverse short oligopeptides and biologically active puromycins.
    Usuki H; Yamamoto Y; Arima J; Iwabuchi M; Miyoshi S; Nitoda T; Hatanaka T
    Org Biomol Chem; 2011 Apr; 9(7):2327-35. PubMed ID: 21321761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis of sterically hindered amides.
    Schäfer G; Bode JW
    Chimia (Aarau); 2014; 68(4):252-5. PubMed ID: 24983609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.
    Gernigon N; Al-Zoubi RM; Hall DG
    J Org Chem; 2012 Oct; 77(19):8386-400. PubMed ID: 23013456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage.
    Paizs B; Suhai S
    J Am Soc Mass Spectrom; 2004 Jan; 15(1):103-13. PubMed ID: 14698560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.