These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29338603)

  • 21. Dysregulating PHO Signaling via the CDK Machinery Differentially Impacts Energy Metabolism, Calcineurin Signaling, and Virulence in Cryptococcus neoformans.
    Bowring BG; Sethiya P; Desmarini D; Lev S; Tran Le L; Bahn YS; Lee SH; Toh-E A; Proschogo N; Savage T; Djordjevic JT
    mBio; 2023 Apr; 14(2):e0355122. PubMed ID: 37017534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases.
    Fridy PC; Otto JC; Dollins DE; York JD
    J Biol Chem; 2007 Oct; 282(42):30754-62. PubMed ID: 17690096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fbp1-mediated ubiquitin-proteasome pathway controls Cryptococcus neoformans virulence by regulating fungal intracellular growth in macrophages.
    Liu TB; Xue C
    Infect Immun; 2014 Feb; 82(2):557-68. PubMed ID: 24478071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism.
    Liao G; Wang Y; Liu TB; Kohli G; Qian W; Shor E; Subbian S; Xue C
    Fungal Genet Biol; 2018 Apr; 113():42-51. PubMed ID: 29357302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans.
    Petzold EW; Himmelreich U; Mylonakis E; Rude T; Toffaletti D; Cox GM; Miller JL; Perfect JR
    Infect Immun; 2006 Oct; 74(10):5877-87. PubMed ID: 16988267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid Flippase Subunit Cdc50 Mediates Drug Resistance and Virulence in Cryptococcus neoformans.
    Huang W; Liao G; Baker GM; Wang Y; Lau R; Paderu P; Perlin DS; Xue C
    mBio; 2016 May; 7(3):. PubMed ID: 27165800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenylyl-Sulfate Kinase (Met14)-Dependent Cysteine and Methionine Biosynthesis Pathways Contribute Distinctively to Pathobiological Processes in Cryptococcus neoformans.
    Lee SH; Jang YB; Choi Y; Lee Y; Shin BN; Lee HS; Lee JS; Bahn YS
    Microbiol Spectr; 2023 Jun; 11(3):e0068523. PubMed ID: 37036370
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Chitty JL; Blake KL; Blundell RD; Koh YQAE; Thompson M; Robertson AAB; Butler MS; Cooper MA; Kappler U; Williams SJ; Kobe B; Fraser JA
    J Biol Chem; 2017 Jul; 292(28):11829-11839. PubMed ID: 28559277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A high energy phosphate jump - From pyrophospho-inositol to pyrophospho-serine.
    Ganguli S; Shah A; Hamid A; Singh A; Palakurti R; Bhandari R
    Adv Biol Regul; 2020 Jan; 75():100662. PubMed ID: 31668836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorination Influences the Bioisostery of Myo-Inositol Pyrophosphate Analogs.
    Hostachy S; Wang H; Zong G; Franke K; Riley AM; Schmieder P; Potter BVL; Shears SB; Fiedler D
    Chemistry; 2023 Dec; 29(67):e202302426. PubMed ID: 37773020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway.
    Jung KW; Strain AK; Nielsen K; Jung KH; Bahn YS
    Fungal Genet Biol; 2012 Apr; 49(4):332-45. PubMed ID: 22343280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. IP8: A quantitatively minor inositol pyrophosphate signaling molecule that punches above its weight.
    Gu C; Li X; Zong G; Wang H; Shears SB
    Adv Biol Regul; 2024 Jan; 91():101002. PubMed ID: 38064879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress-Activated Protein Kinases in Human Fungal Pathogens.
    Day AM; Quinn J
    Front Cell Infect Microbiol; 2019; 9():261. PubMed ID: 31380304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae.
    Morrissette VA; Rolfes RJ
    Curr Genet; 2020 Oct; 66(5):901-910. PubMed ID: 32322930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inositol Pyrophosphates: Energetic, Omnipresent and Versatile Signalling Molecules.
    Shah A; Ganguli S; Sen J; Bhandari R
    J Indian Inst Sci; 2017; 97(1):23-40. PubMed ID: 32214696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inositol pyrophosphates as mammalian cell signals.
    Chakraborty A; Kim S; Snyder SH
    Sci Signal; 2011 Aug; 4(188):re1. PubMed ID: 21878680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sterol-Response Pathways Mediate Alkaline Survival in Diverse Fungi.
    Brown HE; Telzrow CL; Saelens JW; Fernandes L; Alspaugh JA
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of signal transduction pathways related to the pathogenicity of Cryptococcus neoformans in the host environment.
    Matsumoto Y; Azami S; Shiga H; Nagamachi T; Moriyama H; Yamashita Y; Yoshikawa A; Sugita T
    Drug Discov Ther; 2019; 13(4):177-182. PubMed ID: 31534068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inositol pyrophosphates modulate S phase progression after pheromone-induced arrest in Saccharomyces cerevisiae.
    Banfic H; Bedalov A; York JD; Visnjic D
    J Biol Chem; 2013 Jan; 288(3):1717-25. PubMed ID: 23179856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals.
    McClelland EE; Ramagopal UA; Rivera J; Cox J; Nakouzi A; Prabu MM; Almo SC; Casadevall A
    PLoS Pathog; 2016 Sep; 12(9):e1005849. PubMed ID: 27583447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.