These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 29338613)
61. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Panáček A; Smékalová M; Večeřová R; Bogdanová K; Röderová M; Kolář M; Kilianová M; Hradilová Š; Froning JP; Havrdová M; Prucek R; Zbořil R; Kvítek L Colloids Surf B Biointerfaces; 2016 Jun; 142():392-399. PubMed ID: 26970828 [TBL] [Abstract][Full Text] [Related]
62. Solubility-driven toxicity of CuO nanoparticles to Caco2 cells and Escherichia coli: Effect of sonication energy and test environment. Käkinen A; Kahru A; Nurmsoo H; Kubo AL; Bondarenko OM Toxicol In Vitro; 2016 Oct; 36():172-179. PubMed ID: 27511801 [TBL] [Abstract][Full Text] [Related]
63. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. Giannousi K; Lafazanis K; Arvanitidis J; Pantazaki A; Dendrinou-Samara C J Inorg Biochem; 2014 Apr; 133():24-32. PubMed ID: 24441110 [TBL] [Abstract][Full Text] [Related]
64. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Bulcke F; Thiel K; Dringen R Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294 [TBL] [Abstract][Full Text] [Related]
65. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs. Hou J; Miao L; Wang C; Wang P; Ao Y; Lv B Bioresour Technol; 2015 Jan; 176():65-70. PubMed ID: 25460985 [TBL] [Abstract][Full Text] [Related]
67. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Kasithevar M; Periakaruppan P; Muthupandian S; Mohan M Microb Pathog; 2017 Jun; 107():327-334. PubMed ID: 28411059 [TBL] [Abstract][Full Text] [Related]
68. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Zhao J; Wang Z; Dai Y; Xing B Water Res; 2013 Aug; 47(12):4169-78. PubMed ID: 23571112 [TBL] [Abstract][Full Text] [Related]
69. Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications. Bouazizi N; Bargougui R; Thebault P; Clamens T; Desriac F; Fioresi F; Ladam G; Morin-Grognet S; Mofaddel N; Lesouhaitier O; Le Derf F; Vieillard J J Colloid Interface Sci; 2018 Mar; 513():726-735. PubMed ID: 29220687 [TBL] [Abstract][Full Text] [Related]
70. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process. Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735 [TBL] [Abstract][Full Text] [Related]
71. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Vargas-Reus MA; Memarzadeh K; Huang J; Ren GG; Allaker RP Int J Antimicrob Agents; 2012 Aug; 40(2):135-9. PubMed ID: 22727529 [TBL] [Abstract][Full Text] [Related]
72. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. Adur AJ; Nandini N; Shilpashree Mayachar K; Ramya R; Srinatha N J Photochem Photobiol B; 2018 Jun; 183():30-34. PubMed ID: 29684718 [TBL] [Abstract][Full Text] [Related]
73. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Shahverdi AR; Fakhimi A; Shahverdi HR; Minaian S Nanomedicine; 2007 Jun; 3(2):168-71. PubMed ID: 17468052 [TBL] [Abstract][Full Text] [Related]
74. Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. Ali J; Irshad R; Li B; Tahir K; Ahmad A; Shakeel M; Khan NU; Khan ZUH J Photochem Photobiol B; 2018 Jun; 183():349-356. PubMed ID: 29763757 [TBL] [Abstract][Full Text] [Related]
75. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa. Patil MP; Seo YB; Kim GD Microb Pathog; 2018 Mar; 116():84-90. PubMed ID: 29339306 [TBL] [Abstract][Full Text] [Related]
77. Antibacterial behavior of polypyrrole: The influence of morphology and additives incorporation. da Silva FA; Queiroz JC; Macedo ER; Fernandes AW; Freire NB; da Costa MM; de Oliveira HP Mater Sci Eng C Mater Biol Appl; 2016 May; 62():317-22. PubMed ID: 26952429 [TBL] [Abstract][Full Text] [Related]
78. Integrated nanotechnology of synergism-sterilization and removing-residues for neomycin through nano-Cu Zhang Y; Yuan Y; Chen W; Fan J; Lv H; Wu Q Colloids Surf B Biointerfaces; 2019 Nov; 183():110371. PubMed ID: 31408783 [TBL] [Abstract][Full Text] [Related]
79. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Rastogi L; Arunachalam J Colloids Surf B Biointerfaces; 2013 Aug; 108():134-41. PubMed ID: 23531744 [TBL] [Abstract][Full Text] [Related]
80. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. Paul B; Bhuyan B; Purkayastha DD; Dhar SS J Photochem Photobiol B; 2016 Jan; 154():1-7. PubMed ID: 26590801 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]