These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29338729)

  • 1. Computational study of the effects of arterial bifurcation on the temperature distribution during cryosurgery.
    Zheng YC; Wu JH; He ZZ; Huang SJ
    Biomed Eng Online; 2018 Jan; 17(1):4. PubMed ID: 29338729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I--thermal response.
    Hoffmann NE; Bischof JC
    J Biomech Eng; 2001 Aug; 123(4):301-9. PubMed ID: 11563754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes.
    Rewcastle JC; Sandison GA; Muldrew K; Saliken JC; Donnelly BJ
    Med Phys; 2001 Jun; 28(6):1125-37. PubMed ID: 11439482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery.
    Sandison GA; Loye MP; Rewcastle JC; Hahn LJ; Saliken JC; McKinnon JG; Donnelly BJ
    Phys Med Biol; 1998 Nov; 43(11):3309-24. PubMed ID: 9832018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the effect of vessel size and distance on the cryosurgery of an adjacent tumor.
    Nabaei M; Karimi M
    J Therm Biol; 2018 Oct; 77():45-54. PubMed ID: 30196898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized solution and estimation method for cooling performance of downscaled cryoprobe.
    Okajima J
    J Therm Biol; 2019 May; 82():213-221. PubMed ID: 31128650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of configuration between cryoprobe and large blood vessels on the tissue freezing during cryosurgery.
    Deng ZS; Liu J
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2006():490-3. PubMed ID: 17282223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast inverse prediction of the freezing front in cryosurgery.
    Hafid M; Lacroix M
    J Therm Biol; 2017 Oct; 69():13-22. PubMed ID: 29037373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation.
    Liu YJ; Qiao AK; Nan Q; Yang XY
    Int J Hyperthermia; 2006 Sep; 22(6):491-506. PubMed ID: 16971369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Non-Fourier Bioheat Transfer Model for Cryosurgery of Tumor Tissue with Minimum Collateral Damage.
    Barman C; Rath P; Bhattacharya A
    Comput Methods Programs Biomed; 2021 Mar; 200():105857. PubMed ID: 33280936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of view angle tilting to reduce distortions in magnetic resonance imaging of cryosurgery.
    Daniel BL; Butts K
    Magn Reson Imaging; 2000 Apr; 18(3):281-6. PubMed ID: 10745137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance.
    Okajima J; Komiya A; Maruyama S
    Cryobiology; 2014 Dec; 69(3):411-8. PubMed ID: 25305055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and estimation of a novel cryoprobe utilizing the Peltier effect for precise and safe cryosurgery.
    Takeda H; Maruyama S; Okajima J; Aiba S; Komiya A
    Cryobiology; 2009 Dec; 59(3):275-84. PubMed ID: 19723517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU-based 3D iceball modeling for fast cryoablation simulation and planning.
    Golkar E; Rao PP; Joskowicz L; Gangi A; Essert C
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1577-1588. PubMed ID: 31407156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of iceball diameter and temperature distribution achieved with 3-mm accuprobe cryoprobes in porcine and human liver tissue and human colorectal liver metastases in vitro.
    Popken F; Seifert JK; Engelmann R; Dutkowski P; Nassir F; Junginger T
    Cryobiology; 2000 Jun; 40(4):302-10. PubMed ID: 10924262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.
    Etheridge ML; Choi J; Ramadhyani S; Bischof JC
    J Biomech Eng; 2013 Feb; 135(2):021002. PubMed ID: 23445047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model for ice ball evolution in a multi-probe cryosurgery.
    Liu Z; Muldrew K; Wan R; Rewcastle J
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):197-208. PubMed ID: 12888431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical solution of the multidimensional freezing problem during cryosurgery.
    Rabin Y; Shitzer A
    J Biomech Eng; 1998 Feb; 120(1):32-7. PubMed ID: 9675678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced computational bioheat transfer model for a human body with an embedded systemic circulation.
    Coccarelli A; Boileau E; Parthimos D; Nithiarasu P
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1173-90. PubMed ID: 26707859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for the time-dependent thermal distribution within an iceball surrounding a cryoprobe.
    Rewcastle JC; Sandison GA; Hahn LJ; Saliken JC; McKinnon JG; Donnelly BJ
    Phys Med Biol; 1998 Dec; 43(12):3519-34. PubMed ID: 9869029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.