These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29338847)

  • 1. Evaluation and validation of musculoskeletal force feasible set indices: Application to manual wheelchair propulsion.
    Hernandez V; Gorce P; Rezzoug N
    J Biomech; 2018 Feb; 68():70-77. PubMed ID: 29338847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair propulsion: Force orientation and amplitude prediction with Recurrent Neural Network.
    Hernandez V; Rezzoug N; Gorce P; Venture G
    J Biomech; 2018 Sep; 78():166-171. PubMed ID: 30097268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
    Rankin JW; Kwarciak AM; Mark Richter W; Neptune RR
    J Biomech; 2010 Oct; 43(14):2771-9. PubMed ID: 20674921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.
    Hwang S; Lin YS; Hogaboom NS; Wang LH; Koontz AM
    Biomed Tech (Berl); 2017 Aug; 62(4):439-445. PubMed ID: 27639264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximal isometric force exertion predicted by the force feasible set formalism: application to handbraking.
    Rezzoug N; Wang X; Hernandez V; Gorce P
    Ergonomics; 2019 Dec; 62(12):1551-1562. PubMed ID: 31496431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW; Richter WM; Neptune RR
    J Biomech; 2011 Apr; 44(7):1246-52. PubMed ID: 21397232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1996-2002. PubMed ID: 18929029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ; Lin PC; Guo LY; Su FC
    J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability.
    Eydieux N; Hybois S; Siegel A; Bascou J; Vaslin P; Pillet H; Fodé P; Sauret C
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):305-313. PubMed ID: 30786787
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of wheelchair handrim tube diameter on propulsion efficiency and force application (tube diameter and efficiency in wheelchairs).
    van der Linden ML; Valent L; Veeger HE; van der Woude LH
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):123-32. PubMed ID: 8800215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.
    Symonds A; Barbareschi G; Taylor S; Holloway C
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.