BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29338907)

  • 1. New photodynamic molecular beacons (PMB) as potential cancer-targeted agents in PDT.
    Stallivieri A; Colombeau L; Devy J; Etique N; Chaintreuil C; Myrzakhmetov B; Achard M; Baros F; Arnoux P; Vanderesse R; Frochot C
    Bioorg Med Chem; 2018 Feb; 26(3):688-702. PubMed ID: 29338907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation.
    Zheng G; Chen J; Stefflova K; Jarvi M; Li H; Wilson BC
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8989-94. PubMed ID: 17502620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodynamic molecular beacons triggered by MMP-2 and MMP-9: influence of the distance between photosensitizer and quencher onto photophysical properties and enzymatic activation.
    Verhille M; Benachour H; Ibrahim A; Achard M; Arnoux P; Barberi-Heyob M; André JC; Allonas X; Baros F; Vanderesse R; Frochot C
    Curr Med Chem; 2012; 19(32):5580-94. PubMed ID: 22978328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells.
    Chen J; Jarvi M; Lo PC; Stefflova K; Wilson BC; Zheng G
    Photochem Photobiol Sci; 2007 Dec; 6(12):1311-7. PubMed ID: 18046487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production.
    Chen J; Lovell JF; Lo PC; Stefflova K; Niedre M; Wilson BC; Zheng G
    Photochem Photobiol Sci; 2008 Jul; 7(7):775-81. PubMed ID: 18597024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-Responsive Double-Locked Photodynamic Molecular Beacon for Targeted Photodynamic Anticancer Therapy.
    Tam LKB; Chu JCH; He L; Yang C; Han KC; Cheung PCK; Ng DKP; Lo PC
    J Am Chem Soc; 2023 Apr; 145(13):7361-7375. PubMed ID: 36961946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of advanced photodynamic molecular beacon architectures.
    Lovell JF; Chen J; Huynh E; Jarvi MT; Wilson BC; Zheng G
    Bioconjug Chem; 2010 Jun; 21(6):1023-5. PubMed ID: 20509598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tumor-Targeting Dual-Stimuli-Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy.
    Tam LKB; He L; Ng DKP; Cheung PCK; Lo PC
    Chemistry; 2022 Oct; 28(57):e202201652. PubMed ID: 35852020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action.
    Turan IS; Cakmak FP; Yildirim DC; Cetin-Atalay R; Akkaya EU
    Chemistry; 2014 Dec; 20(49):16088-92. PubMed ID: 25345802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons.
    Luby BM; Walsh CD; Zheng G
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2558-2569. PubMed ID: 29890024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy.
    Jin CS; Cui L; Wang F; Chen J; Zheng G
    Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo matrix metalloproteinase expression after photodynamic therapy with a liposomal formulation of aminolevulinic acid and its methyl ester.
    Osiecka B; Jurczyszyn K; Symonowicz K; Bronowicz A; Ostasiewicz P; Czapińska E; Hotowy K; Krzystek-Korpacka M; Gebarowska E; Izykowska I; Dziegiel P; Terlecki G; Ziółkowski P
    Cell Mol Biol Lett; 2010 Dec; 15(4):630-50. PubMed ID: 20865364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light.
    Turan IS; Yildiz D; Turksoy A; Gunaydin G; Akkaya EU
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2875-8. PubMed ID: 26799149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation.
    Chen J; Stefflova K; Niedre MJ; Wilson BC; Chance B; Glickson JD; Zheng G
    J Am Chem Soc; 2004 Sep; 126(37):11450-1. PubMed ID: 15366886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-substituted phthalocyanine photosensitizers: design, synthesis, photophysicochemical and photobiological studies.
    Göksel M; Durmuş M; Atilla D
    Photochem Photobiol Sci; 2016 Oct; 15(10):1318-1329. PubMed ID: 27714248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.
    Cheng Y; Cheng H; Jiang C; Qiu X; Wang K; Huan W; Yuan A; Wu J; Hu Y
    Nat Commun; 2015 Nov; 6():8785. PubMed ID: 26525216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy.
    Liu J; Ding G; Chen S; Xue C; Chen M; Wu X; Yuan Q; Zheng J; Yang R
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9681-9690. PubMed ID: 33606499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Ma Y; Li X; Li A; Yang P; Zhang C; Tang B
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13752-13756. PubMed ID: 28856780
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.