BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29339023)

  • 1. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.
    Kitahama Y; Itoh T; Suzuki T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():142-147. PubMed ID: 29339023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on tip enhanced Raman spectra of graphene.
    Li X; Liu Y; Zeng Z; Wang P; Fang Y; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():378-382. PubMed ID: 28950229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering.
    Sun M; Fang Y; Yang Z; Xu H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9412-9. PubMed ID: 19830324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopatterning and tuning of optical taper antenna apex for tip-enhanced Raman scattering performance.
    Kharintsev SS; Rogov AM; Kazarian SG
    Rev Sci Instrum; 2013 Sep; 84(9):093106. PubMed ID: 24089815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy.
    Liu Y; Zhao Y; Zhang L; Yan Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():539-546. PubMed ID: 31078821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes.
    Wei Y; Pei H; Sun D; Duan S; Tian G
    J Phys Condens Matter; 2019 Jun; 31(23):235301. PubMed ID: 30818299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White-light total internal reflection microscopy for characterizing the optical properties of Ag-coated optical fiber tips.
    Wang R; Wang J; Hao F; Tian Q
    Appl Opt; 2010 Jul; 49(20):3905-8. PubMed ID: 20648164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering.
    Bhattarai A; Joly AG; Hess WP; El-Khoury PZ
    Nano Lett; 2017 Nov; 17(11):7131-7137. PubMed ID: 28972773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection.
    Zhang M; Wang J; Tian Q
    Opt Express; 2013 Apr; 21(8):9414-21. PubMed ID: 23609652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole.
    Mino T; Saito Y; Verma P
    ACS Nano; 2014 Oct; 8(10):10187-95. PubMed ID: 25171468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep ultraviolet tip-enhanced Raman scattering.
    Yang Z; Li Q; Fang Y; Sun M
    Chem Commun (Camb); 2011 Aug; 47(32):9131-3. PubMed ID: 21750821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.
    Tian ZQ; Ren B; Li JF; Yang ZL
    Chem Commun (Camb); 2007 Sep; (34):3514-34. PubMed ID: 18080535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips.
    Tallarida N; Lee J; Apkarian VA
    ACS Nano; 2017 Nov; 11(11):11393-11401. PubMed ID: 28980800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light.
    Kazemi-Zanjani N; Vedraine S; Lagugné-Labarthet F
    Opt Express; 2013 Oct; 21(21):25271-6. PubMed ID: 24150367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample induced intensity variations of localized surface plasmon resonance in tip-enhanced Raman spectroscopy.
    Zhang J; Youssef AH; Dörfler A; Kolhatkar G; Merlen A; Ruediger A
    Opt Express; 2020 Aug; 28(18):25998-26006. PubMed ID: 32906877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle attachment on silver corrugated-wire nanoantenna for large increases of surface-enhanced Raman scattering.
    Tian C; Ding C; Liu S; Yang S; Song X; Ding B; Li Z; Fang J
    ACS Nano; 2011 Dec; 5(12):9442-9. PubMed ID: 22059897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering.
    Demming AL; Festy F; Richards D
    J Chem Phys; 2005 May; 122(18):184716. PubMed ID: 15918756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitating Hotspot Alignment in Tip-Enhanced Raman Spectroscopy via the Silver Photoluminescence of the Probe.
    Fan Y; Jin D; Wu X; Fang H; Yuan X
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33238402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.