These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29339152)

  • 21. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection of novel forms of a functional domain within the Tetrahymena ribozyme.
    Williams KP; Imahori H; Fujimoto DN; Inoue T
    Nucleic Acids Res; 1994 Jun; 22(11):2003-9. PubMed ID: 8029006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme.
    Zarrinkar PP; Williamson JR
    Nucleic Acids Res; 1996 Mar; 24(5):854-8. PubMed ID: 8600452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamics and kinetics for the helix formation of the P3 region in Tetrahymena ribozyme.
    Sugimoto N; Monden N; Sasaki M; Yamakage S; Takaku H
    Nucleic Acids Symp Ser; 1990; (22):45-6. PubMed ID: 2101912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concerted effects of two activator modules on the group I ribozyme reaction.
    Ikawa Y; Shiohara T; Ohuchi S; Inoue T
    J Biochem; 2009 Apr; 145(4):429-35. PubMed ID: 19122204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-range interaction between the P2.1 and P9.1 peripheral domains of the Tetrahymena ribozyme.
    Ikawa Y; Ohta H; Shiraishi H; Inoue T
    Nucleic Acids Res; 1997 May; 25(9):1761-5. PubMed ID: 9108158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron.
    Golden BL; Podell ER; Gooding AR; Cech TR
    J Mol Biol; 1997 Aug; 270(5):711-23. PubMed ID: 9245599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations in a semiconserved region of the Tetrahymena intron.
    Pace U; Szostak JW
    FEBS Lett; 1991 Mar; 280(1):171-4. PubMed ID: 2009960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering a family of synthetic splicing ribozymes.
    Che AJ; Knight TF
    Nucleic Acids Res; 2010 May; 38(8):2748-55. PubMed ID: 20299341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly.
    Hasegawa S; Rao J
    FEBS Lett; 2006 Mar; 580(6):1592-6. PubMed ID: 16472807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations.
    Mitchell D; Jarmoskaite I; Seval N; Seifert S; Russell R
    J Mol Biol; 2013 Aug; 425(15):2670-86. PubMed ID: 23702292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.