These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29339152)

  • 41. Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA-RNA interface between two structural modules.
    Tsuruga R; Uehara N; Suzuki Y; Furuta H; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2019 Oct; 128(4):410-415. PubMed ID: 31109874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualizing the higher order folding of a catalytic RNA molecule.
    Celander DW; Cech TR
    Science; 1991 Jan; 251(4992):401-7. PubMed ID: 1989074
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maximizing RNA folding rates: a balancing act.
    Thirumalai D; Woodson SA
    RNA; 2000 Jun; 6(6):790-4. PubMed ID: 10864039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes.
    Kuo LY; Cech TR
    Nucleic Acids Res; 1996 Oct; 24(19):3722-7. PubMed ID: 8871550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Hexameric Ribozyme Nanostructure Formed by Double-Decker Assembly of a Pair of Triangular Ribozyme Trimers.
    Yu K; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    Chembiochem; 2022 Mar; 23(6):e202100573. PubMed ID: 35088928
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding mechanisms of group I ribozymes: role of stability and contact order.
    Woodson SA
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):1166-9. PubMed ID: 12440997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain.
    Jaeger L; Wright MC; Joyce GF
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14712-7. PubMed ID: 10611278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Counterion charge density determines the position and plasticity of RNA folding transition states.
    Koculi E; Thirumalai D; Woodson SA
    J Mol Biol; 2006 Jun; 359(2):446-54. PubMed ID: 16626736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA molecules with conserved catalytic cores but variable peripheries fold along unique energetically optimized pathways.
    Mitra S; Laederach A; Golden BL; Altman RB; Brenowitz M
    RNA; 2011 Aug; 17(8):1589-603. PubMed ID: 21712400
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translocation of an RNA duplex on a ribozyme.
    Strobel SA; Cech TR
    Nat Struct Biol; 1994 Jan; 1(1):13-7. PubMed ID: 7544680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of a catalytic module on a self-folding RNA.
    Yoshioka W; Ikawa Y; Jaeger L; Shiraishi H; Inoue T
    RNA; 2004 Dec; 10(12):1900-6. PubMed ID: 15525711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Requirements for alternative forms of the activator domain, P5abc, in the Tetrahymena ribozyme.
    Naito Y; Shiraishi H; Inoue T
    FEBS Lett; 2000 Jan; 466(2-3):273-8. PubMed ID: 10682842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme.
    Shi X; Solomatin SV; Herschlag D
    J Am Chem Soc; 2012 Feb; 134(4):1910-3. PubMed ID: 22220837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Imaging Tetrahymena ribozyme splicing activity in single live mammalian cells.
    Hasegawa S; Jackson WC; Tsien RY; Rao J
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14892-6. PubMed ID: 14645710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.