BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29339260)

  • 1. The complement system in the airway epithelium: An overlooked host defense mechanism and therapeutic target?
    Kulkarni HS; Liszewski MK; Brody SL; Atkinson JP
    J Allergy Clin Immunol; 2018 May; 141(5):1582-1586.e1. PubMed ID: 29339260
    [No Abstract]   [Full Text] [Related]  

  • 2. From rhinitis to asthma: Is small airway disfunction the clue?
    Valverde-Molina J
    Allergol Immunopathol (Madr); 2018; 46(4):311-312. PubMed ID: 29914634
    [No Abstract]   [Full Text] [Related]  

  • 3. Epithelial barriers in allergy and asthma.
    Hellings PW; Steelant B
    J Allergy Clin Immunol; 2020 Jun; 145(6):1499-1509. PubMed ID: 32507228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing the epithelial, viral, and allergic paradigm for asthma: Giles F. Filley lecture.
    Holtzman MJ; Agapov E; Kim E; Kim JI; Morton JD
    Chest; 2003 Mar; 123(3 Suppl):377S-84S. PubMed ID: 12628993
    [No Abstract]   [Full Text] [Related]  

  • 5. Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface.
    Hiemstra PS
    Mol Immunol; 2015 Nov; 68(1):28-30. PubMed ID: 26597202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histopathologic and morphometric evaluation of the nasal and pulmonary airways of cats with experimentally induced asthma.
    Venema CM; Williams KJ; Gershwin LJ; Reinero CR; Carey SA
    Int Arch Allergy Immunol; 2013; 160(4):365-76. PubMed ID: 23183217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bronchial epithelium as a target for innovative treatments in asthma.
    Gras D; Chanez P; Vachier I; Petit A; Bourdin A
    Pharmacol Ther; 2013 Dec; 140(3):290-305. PubMed ID: 23880290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic cell and epithelial cell interactions at the origin of murine asthma.
    Lambrecht BN; Hammad H
    Ann Am Thorac Soc; 2014 Dec; 11 Suppl 5():S236-43. PubMed ID: 25525726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of subepithelial collagen deposition in the airways of mice following ovalbumin sensitization and intratracheal challenge.
    Reinhardt AK; Bottoms SE; Laurent GJ; McAnulty RJ
    Chest; 2003 Mar; 123(3 Suppl):428S. PubMed ID: 12629017
    [No Abstract]   [Full Text] [Related]  

  • 10. Airway epithelial barrier function regulates the pathogenesis of allergic asthma.
    Heijink IH; Nawijn MC; Hackett TL
    Clin Exp Allergy; 2014; 44(5):620-30. PubMed ID: 24612268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway epithelium mediates the anti-inflammatory effects of exercise on asthma.
    Vieira RP; Toledo AC; Ferreira SC; Santos AB; Medeiros MC; Hage M; Mauad T; Martins Mde A; Dolhnikoff M; Carvalho CR
    Respir Physiol Neurobiol; 2011 Mar; 175(3):383-9. PubMed ID: 21236366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model.
    Sutovska M; Kocmalova M; Joskova M; Adamkov M; Franova S
    Gen Physiol Biophys; 2015 Apr; 34(2):167-76. PubMed ID: 25730896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the airway epithelium in allergic asthma: interleukin-13- induced effects in differentiated murine tracheal epithelial cells.
    Lankford SM; Macchione M; Crews AL; McKane SA; Akley NJ; Martin LD
    In Vitro Cell Dev Biol Anim; 2005; 41(7):217-24. PubMed ID: 16223336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of growth factors by airway epithelial cells in a model of chronic asthma: regulation and relationship to subepithelial fibrosis.
    Kumar RK; Herbert C; Foster PS
    Clin Exp Allergy; 2004 Apr; 34(4):567-75. PubMed ID: 15080809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways.
    Ryu JH; Yoo JY; Kim MJ; Hwang SG; Ahn KC; Ryu JC; Choi MK; Joo JH; Kim CH; Lee SN; Lee WJ; Kim J; Shin DM; Kweon MN; Bae YS; Yoon JH
    J Allergy Clin Immunol; 2013 Feb; 131(2):549-61. PubMed ID: 23036747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the role of zinc in the respiratory epithelium.
    Truong-Tran AQ; Carter J; Ruffin R; Zalewski PD
    Immunol Cell Biol; 2001 Apr; 79(2):170-7. PubMed ID: 11264713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The paradigm of cytokine networks in allergic airway inflammation.
    Pawankar R; Hayashi M; Yamanishi S; Igarashi T
    Curr Opin Allergy Clin Immunol; 2015 Feb; 15(1):41-8. PubMed ID: 25479317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clara cells drive eosinophil accumulation in allergic asthma.
    Sonar SS; Ehmke M; Marsh LM; Dietze J; Dudda JC; Conrad ML; Renz H; Nockher WA
    Eur Respir J; 2012 Feb; 39(2):429-38. PubMed ID: 21828027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma.
    Hawlisch H; Wills-Karp M; Karp CL; Köhl J
    Mol Immunol; 2004 Jun; 41(2-3):123-31. PubMed ID: 15159057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airway epithelial cell signaling in response to bacterial pathogens.
    Gómez MI; Prince A
    Pediatr Pulmonol; 2008 Jan; 43(1):11-9. PubMed ID: 18041080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.