BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29339328)

  • 1. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera).
    Rajabi H; Stamm K; Appel E; Gorb SN
    Arthropod Struct Dev; 2018 Jul; 47(4):442-448. PubMed ID: 29339328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
    Rajabi H; Ghoroubi N; Stamm K; Appel E; Gorb SN
    Acta Biomater; 2017 Sep; 60():330-338. PubMed ID: 28739543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.
    Zhang S; Sunami Y; Hashimoto H
    Sci Rep; 2018 Apr; 8(1):5751. PubMed ID: 29636549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and mechanical characterisation of the hindwing nodus from the Libellulidae family of dragonfly (Indonesia).
    Fauziyah S; Alam C; Soesilohadi RC; Retnoaji B; Alam P
    Arthropod Struct Dev; 2014 Sep; 43(5):415-22. PubMed ID: 25033711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.
    Rajabi H; Shafiei A; Darvizeh A; Gorb SN
    Sci Rep; 2016 Dec; 6():39039. PubMed ID: 27966641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species.
    Suárez-Tovar CM; Sarmiento CE
    J Evol Biol; 2016 Apr; 29(4):690-703. PubMed ID: 26779975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration.
    Huang ST; Wang HR; Yang WQ; Si YC; Wang YT; Sun ML; Qi X; Bai Y
    PeerJ; 2020; 8():e8567. PubMed ID: 32095371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resilin in the flight apparatus of Odonata (Insecta)-cap tendons and their biomechanical importance for flight.
    Bäumler F; Büsse S
    Biol Lett; 2019 May; 15(5):20190127. PubMed ID: 31064308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The damping and structural properties of dragonfly and damselfly wings during dynamic movement.
    Lietz C; Schaber CF; Gorb SN; Rajabi H
    Commun Biol; 2021 Jun; 4(1):737. PubMed ID: 34131288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus.
    Bäumler F; Gorb SN; Büsse S
    Arthropod Struct Dev; 2018 Jul; 47(4):430-441. PubMed ID: 29684556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thorax musculature of Anisoptera (Insecta: Odonata) nymphs and its evolutionary relevance.
    Büsse S; Hörnschemeyer T
    BMC Evol Biol; 2013 Nov; 13():237. PubMed ID: 24180622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the fracture resistance of dragonfly wings.
    Rudolf J; Wang LY; Gorb SN; Rajabi H
    J Mech Behav Biomed Mater; 2019 Nov; 99():127-133. PubMed ID: 31351402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palaeozoic giant dragonflies were hawker predators.
    Nel A; Prokop J; Pecharová M; Engel MS; Garrouste R
    Sci Rep; 2018 Aug; 8(1):12141. PubMed ID: 30108284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the wings of dragons: Wing morphometric differences in the sexually dichromatic common whitetail skimmer dragonfly, Plathemis lydia (Odonata: Libellulidae).
    Rubio AO; Dye AM; Ifill KE; Summers K
    PLoS One; 2024; 19(5):e0303690. PubMed ID: 38809838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of dragonfly wing deformations on aerodynamic performance during forward flight.
    Shumway N; Gabryszuk M; Laurence S
    Bioinspir Biomim; 2020 Feb; 15(2):026005. PubMed ID: 31747648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phase lag on the hovering flight of damselfly and dragonfly.
    Zou PY; Lai YH; Yang JT
    Phys Rev E; 2019 Dec; 100(6-1):063102. PubMed ID: 31962416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication.
    Guillermo-Ferreira R; Bispo PC; Appel E; Kovalev A; Gorb SN
    J Insect Physiol; 2015 Oct; 81():129-36. PubMed ID: 26188874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.