BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29339338)

  • 1. The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.).
    Li K; Chen J; Zhu L
    Environ Pollut; 2018 Apr; 235():692-699. PubMed ID: 29339338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether.
    Chen J; Le XC; Zhu L
    Environ Int; 2019 Dec; 133(Pt A):105154. PubMed ID: 31521816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and transport mechanisms of decabromodiphenyl ether (BDE-209) by rice (Oryza sativa).
    Chow KL; Man YB; Tam NFY; Liang Y; Wong MH
    Chemosphere; 2015 Jan; 119():1262-1267. PubMed ID: 25460770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether.
    Chen J; Li K; Le XC; Zhu L
    Environ Pollut; 2018 Jun; 237():308-317. PubMed ID: 29499574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant uptake and phytotoxicity of decabromodiphenyl ether (BDE-209) in ryegrass (Lolium perenne L).
    Xie X; Qian Y; Xue Y; He H; Wei D
    Environ Sci Process Impacts; 2013 Oct; 15(10):1904-12. PubMed ID: 23999790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Decabromodiphenyl Ether and Elevated Carbon Dioxide on Rice (Oryza sativa L.).
    Mao L; Wang YB; Zhu CW; Yin Y; Guo HY
    Bull Environ Contam Toxicol; 2020 Aug; 105(2):237-243. PubMed ID: 32651610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological Responses and Phytotoxicities of Lythrum salicaria to Decabromodiphenyl Ether (BDE-209).
    Wang F; Fan Y; Tang H; Dai Y; Liang W
    Bull Environ Contam Toxicol; 2021 Apr; 106(4):575-582. PubMed ID: 33528602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass.
    Feng M; He Q; Shi J; Qin L; Zhang X; Sun P; Wang Z
    Environ Toxicol Chem; 2016 Jun; 35(6):1349-57. PubMed ID: 26448514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate and ecological effects of decabromodiphenyl ether in a field lysimeter.
    Du W; Ji R; Sun Y; Zhu J; Wu J; Guo H
    Environ Sci Technol; 2013 Aug; 47(16):9167-74. PubMed ID: 23899302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-assisted rhizoremediation of decabromodiphenyl ether for e-waste recycling area soil of Taizhou, China.
    He Y; Li X; Shen X; Jiang Q; Chen J; Shi J; Tang X; Xu J
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9976-88. PubMed ID: 25666473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and transformation of decabromodiphenyl ether in different rice cultivars: Evidence from a carbon-14 study.
    Zhao P; Ye Q; Yu K; Whalen JK; Rajesh Kumar R; Cheng X; Delgado-Moreno L; Wang W
    Sci Total Environ; 2020 Feb; 704():135398. PubMed ID: 31836228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytotoxicity of brominated diphenyl ether-47 (BDE-47) and its hydroxylated and methoxylated analogues (6-OH-BDE-47 and 6-MeO-BDE-47) to maize (Zea mays L.).
    Xu X; Huang H; Wen B; Wang S; Zhang S
    Chem Res Toxicol; 2015 Mar; 28(3):510-7. PubMed ID: 25654621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation of decabromodiphenyl ether affects the antioxidant system in the clam Mactra veneriformis.
    Zhu N; Yang Y; Xu H; Wang Q; Wei Y; Li M; Li F; Wang Y; Zhang H; Liu Y; Wang X; Fang Y
    Environ Toxicol Pharmacol; 2019 May; 68():19-26. PubMed ID: 30861468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) and implications for the reference dose.
    Goodman JE
    Regul Toxicol Pharmacol; 2009 Jun; 54(1):91-104. PubMed ID: 19249332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and biochemical responses and microscopic structure changes of Populus tomentosa Carr seedlings to 4-BDE exposure.
    Cai M; Li Y; Li Y; Du K
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):14258-68. PubMed ID: 25971809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant responses of rice seedling to Ce⁴+ under hydroponic cultures.
    Xu QM; Chen H
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1693-9. PubMed ID: 21514673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium in rice grains from a field trial in relation to model parameters of Cd-toxicity and -absorption in rice seedlings.
    Chiao WT; Syu CH; Chen BC; Juang KW
    Ecotoxicol Environ Saf; 2019 Mar; 169():837-847. PubMed ID: 30597783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of decabromodiphenyl ether (BDE-209) in soil: effects of rhizosphere and mycorrhizal colonization of ryegrass roots.
    Wang S; Zhang S; Huang H; Christie P
    Environ Pollut; 2011 Mar; 159(3):749-53. PubMed ID: 21183262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles.
    Huang Q; Liu Q; Lin L; Li FJ; Han Y; Song ZG
    Ecotoxicol Environ Saf; 2018 Sep; 159():261-271. PubMed ID: 29753827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a polybrominated diphenyl ether congener (BDE-47) on growth and antioxidative enzymes of two mangrove plant species, Kandelia obovata and Avicennia marina, in South China.
    Wang Y; Zhu H; Tam NF
    Mar Pollut Bull; 2014 Aug; 85(2):376-84. PubMed ID: 24631399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.