These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29339414)

  • 1. Assembly of Methyl Coenzyme M Reductase in the Methanogenic Archaeon Methanococcus maripaludis.
    Lyu Z; Chou CW; Shi H; Wang L; Ghebreab R; Phillips D; Yan Y; Duin EC; Whitman WB
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29339414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslational Methylation of Arginine in Methyl Coenzyme M Reductase Has a Profound Impact on both Methanogenesis and Growth of Methanococcus maripaludis.
    Lyu Z; Shao N; Chou CW; Shi H; Patel R; Duin EC; Whitman WB
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31740491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Dynamics of the Methyl-Coenzyme M Reductase Active Site Are Influenced by Coenzyme F
    Polêto MD; Allen KD; Lemkul JA
    Biochemistry; 2024 Jul; 63(14):1783-1794. PubMed ID: 38914925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea.
    Shao N; Fan Y; Chou CW; Yavari S; Williams RV; Amster IJ; Brown SM; Drake IJ; Duin EC; Whitman WB; Liu Y
    Commun Biol; 2022 Oct; 5(1):1113. PubMed ID: 36266535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. McrD binds asymmetrically to methyl-coenzyme M reductase improving active-site accessibility during assembly.
    Chadwick GL; Joiner AMN; Ramesh S; Mitchell DA; Nayak DD
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2302815120. PubMed ID: 37307484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.
    Wagner T; Kahnt J; Ermler U; Shima S
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10630-3. PubMed ID: 27467699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression.
    Gendron A; Allen KD
    Front Microbiol; 2022; 13():867342. PubMed ID: 35547147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl-Coenzyme M Reductase and Its Post-translational Modifications.
    Chen H; Gan Q; Fan C
    Front Microbiol; 2020; 11():578356. PubMed ID: 33162960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
    Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO
    Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea.
    Nayak DD; Mahanta N; Mitchell DA; Metcalf WW
    Elife; 2017 Sep; 6():. PubMed ID: 28880150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of coenzyme F430 biosynthetic enzymes and intermediates.
    Ray P; Rand-Fleming CR; Mansoorabadi SO
    Methods Enzymol; 2024; 702():147-170. PubMed ID: 39155109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models.
    Miyazaki Y; Oohora K; Hayashi T
    Chem Soc Rev; 2022 Mar; 51(5):1629-1639. PubMed ID: 35148362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase.
    Kunz RC; Horng YC; Ragsdale SW
    J Biol Chem; 2006 Nov; 281(45):34663-76. PubMed ID: 16966321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states.
    Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderating influence of proteins on nonplanar tetrapyrrole deformations: coenzyme F430 in methyl-coenzyme-M reductase.
    Todd LN; Zimmer M
    Inorg Chem; 2002 Dec; 41(25):6831-7. PubMed ID: 12470081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2.
    Mahlert F; Bauer C; Jaun B; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Apr; 7(4-5):500-13. PubMed ID: 11941508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.