These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29339488)

  • 21. Modified error in constitutive equations (MECE) approach for ultrasound elastography.
    Ghosh S; Zou Z; Babaniyi O; Aquino W; Diaz MI; Bayat M; Fatemi M
    J Acoust Soc Am; 2017 Oct; 142(4):2084. PubMed ID: 29092577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vibration analysis of healthy skin: toward a noninvasive skin diagnosis methodology.
    Panchal R; Horton L; Poozesh P; Baqersad J; Nasiriavanaki M
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30666853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiresolution approach to shear wave image reconstruction.
    Hollender P; Bottenus N; Trahey G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1429-39. PubMed ID: 26276953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study.
    Simon EG; Callé S; Perrotin F; Remenieras JP
    PLoS One; 2018; 13(4):e0194309. PubMed ID: 29621270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of numerical methods to elasticity imaging.
    Castaneda B; Ormachea J; Rodríguez P; Parker KJ
    Mol Cell Biomech; 2013 Mar; 10(1):43-65. PubMed ID: 24010245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of iris elasticity using acoustic radiation force optical coherence elastography.
    Zhu Y; Zhang Y; Shi G; Xue Q; Han X; Ai S; Shi J; Xie C; He X
    Appl Opt; 2020 Dec; 59(34):10739-10745. PubMed ID: 33361893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shear wave speed and dispersion measurements using crawling wave chirps.
    Hah Z; Partin A; Parker KJ
    Ultrason Imaging; 2014 Oct; 36(4):277-90. PubMed ID: 24658144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new finite element method for inverse problems in structural analysis: application to atherosclerotic plaque elasticity reconstruction.
    Bouvier A; Deleaval F; Doyley MM; Tacheau A; Finet G; Le Floc'h S; Cloutier G; Pettigrew RI; Ohayon J
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():16-7. PubMed ID: 25074142
    [No Abstract]   [Full Text] [Related]  

  • 30. Prediction of the biomechanical effects of compression therapy by finite element modeling and ultrasound elastography.
    Frauziols F; Molimard J; Navarro L; Badel P; Viallon M; Testa R; Avril S
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1011-9. PubMed ID: 25494500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ultrasound elastography inverse problem and the effective criteria.
    Aghajani A; Haghpanahi M; Nikazad T
    Proc Inst Mech Eng H; 2013 Nov; 227(11):1203-12. PubMed ID: 23921546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
    Qiu W; Wang C; Li Y; Zhou J; Yang G; Xiao Y; Feng G; Jin Q; Mu P; Qian M; Zheng H
    Ultrasonics; 2015 Sep; 62():89-96. PubMed ID: 26025508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passive elastography: shear-wave tomography from physiological-noise correlation in soft tissues.
    Gallot T; Catheline S; Roux P; Brum J; Benech N; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1122-6. PubMed ID: 21693392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
    Eskandari H; Baghani A; Salcudean SE; Rohling R
    Phys Med Biol; 2009 Jul; 54(13):3997-4017. PubMed ID: 19502703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 4-D ultrafast shear-wave imaging.
    Gennisson JL; Provost J; Deffieux T; Papadacci C; Imbault M; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1059-65. PubMed ID: 26067040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.
    Nguyen TM; Zorgani A; Lescanne M; Boccara C; Fink M; Catheline S
    J Biomed Opt; 2016 Dec; 21(12):126013. PubMed ID: 27999863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of soft poroelastic tissue in time-harmonic MR elastography.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):598-608. PubMed ID: 19272864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Algorithms for quantitative quasi-static elasticity imaging using force data.
    Tyagi M; Goenezen S; Barbone PE; Oberai AA
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1421-36. PubMed ID: 25073623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.