BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29339610)

  • 1. Effect of precursor type on the reduction of concentrated nitrate using zero-valent copper and sodium borohydride.
    Belay TA; Lin CY; Hsiao HM; Chang MF; Liu JC
    Water Sci Technol; 2018 Jan; 77(1-2):114-122. PubMed ID: 29339610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of concentrated nitrate by using in situ synthesized zero-valent copper.
    Belay TA; Lin FM; Lin CY; Hsiao HM; Chang MF; Liu JC
    Water Sci Technol; 2015; 72(6):960-5. PubMed ID: 26360756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High selective reduction of nitrate into nitrogen by novel Fe-Cu/D407 composite with excellent stability and activity.
    Tang TT; Xing QJ; Zhang SH; Mu Y; Jiang XH; Zhou ZG; Xiao X; Zou JP
    Environ Pollut; 2019 Sep; 252(Pt A):888-896. PubMed ID: 31207573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH and H
    Wang J; Song M; Chen B; Wang L; Zhu R
    Chemosphere; 2017 Oct; 184():1003-1011. PubMed ID: 28658735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable removal of nitrite waste to value-added ammonia on Cu@Cu
    Yeon S; Lee SJ; Kim J; Begildayeva T; Min A; Theerthagiri J; Kumari MLA; Pinto LMC; Kong H; Choi MY
    Environ Res; 2022 Dec; 215(Pt 1):114154. PubMed ID: 36037916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.
    Liu H; Guo M; Zhang Y
    Environ Technol; 2014; 35(5-8):917-24. PubMed ID: 24645474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of Nitrate-Nitrogen and Nitrite-Nitrogen in Drinking Water.
    Sato Y; Ishihara M; Fukuda K; Nakamura S; Murakami K; Fujita M; Yokoe H
    Biocontrol Sci; 2018; 23(3):139-143. PubMed ID: 30249964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride.
    Huang CC; Lo SL; Tsai SM; Lien HL
    J Environ Monit; 2011 Sep; 13(9):2406-12. PubMed ID: 21850296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water.
    Weigelhofer G; Hein T
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13534-45. PubMed ID: 25943519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective reduction of nitrate to nitrogen by Fe
    Guo J; Deng J; An B; Tian J; Wu J; Liu Y
    Chemosphere; 2022 May; 295():133785. PubMed ID: 35104554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrocatalytic reduction of nitrate from drinking water by porous titanium loaded Pd-Cu cathode].
    Fan JH; Fan B; Lu DQ; Qu D; Luan ZK
    Huan Jing Ke Xue; 2006 Jun; 27(6):1117-22. PubMed ID: 16921946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly active copper-nanoparticle-based nitrate reduction electrocatalyst prepared by in situ electrodeposition and annealing.
    Hong M; Wang Q; Sun J; Wu C
    Sci Total Environ; 2022 Jun; 827():154349. PubMed ID: 35257778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol.
    Khan FU; Asimullah ; Khan SB; Kamal T; Asiri AM; Khan IU; Akhtar K
    Int J Biol Macromol; 2017 Sep; 102():868-877. PubMed ID: 28428128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nitrate from water by acid-washed zero-valent iron/ferrous ion/hydrogen peroxide: influencing factors and reaction mechanism.
    Li Y; Fu F; Ding Z
    Water Sci Technol; 2018 Jan; 77(1-2):525-533. PubMed ID: 29377837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Cu(II) in the reduction of N-nitrosodimethylamine with iron and zinc.
    Han Y; Chen ZL; Shen JM; Wang JH; Li WW; Li J; Wang BY; Tong LN
    Chemosphere; 2017 Jan; 167():171-177. PubMed ID: 27718429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu-TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation.
    Chiang LF; Doong RA
    J Hazard Mater; 2014 Jul; 277():84-92. PubMed ID: 24556011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urban stormwater runoff nitrogen composition and fate in bioretention systems.
    Li L; Davis AP
    Environ Sci Technol; 2014 Mar; 48(6):3403-10. PubMed ID: 24571092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of drying-rewetting alternation on nitrogen, dynamics in a typical coastal wetland: a simulation study].
    Han JG; Cao X
    Huan Jing Ke Xue; 2013 Jun; 34(6):2383-9. PubMed ID: 23947060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification.
    Crema APS; Piazza Borges LD; Micke GA; Debacher NA
    Chemosphere; 2020 Apr; 244():125502. PubMed ID: 31837564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe(0) catalysts.
    Bae S; Hamid S; Jung J; Sihn Y; Lee W
    Environ Technol; 2016; 37(9):1077-87. PubMed ID: 26512419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.