These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 29339896)

  • 21. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury.
    Dyck S; Kataria H; Alizadeh A; Santhosh KT; Lang B; Silver J; Karimi-Abdolrezaee S
    J Neuroinflammation; 2018 Mar; 15(1):90. PubMed ID: 29558941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection.
    Martini AC; Berta T; Forner S; Chen G; Bento AF; Ji RR; Rae GA
    J Neuroinflammation; 2016 Apr; 13(1):75. PubMed ID: 27059991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury?
    Walters ET
    Auton Neurosci; 2018 Jan; 209():79-89. PubMed ID: 28161248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Latest approaches for the treatment of spasticity and autonomic dysreflexia in chronic spinal cord injury.
    Rabchevsky AG; Kitzman PH
    Neurotherapeutics; 2011 Apr; 8(2):274-82. PubMed ID: 21384222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury.
    Liu Z; Yao X; Jiang W; Li W; Zhu S; Liao C; Zou L; Ding R; Chen J
    J Neuroinflammation; 2020 Mar; 17(1):90. PubMed ID: 32192500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dementia, Depression, and Associated Brain Inflammatory Mechanisms after Spinal Cord Injury.
    Li Y; Cao T; Ritzel RM; He J; Faden AI; Wu J
    Cells; 2020 Jun; 9(6):. PubMed ID: 32521597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of pain symptoms and quality of life using the International Spinal Cord Injury Data Sets in persons with chronic spinal cord injury.
    Gibbs K; Beaufort A; Stein A; Leung TM; Sison C; Bloom O
    Spinal Cord Ser Cases; 2019; 5():32. PubMed ID: 31240125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function.
    Gris D; Marsh DR; Oatway MA; Chen Y; Hamilton EF; Dekaban GA; Weaver LC
    J Neurosci; 2004 Apr; 24(16):4043-51. PubMed ID: 15102919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology?
    Goodus MT; McTigue DM
    Exp Neurol; 2020 Mar; 325():113160. PubMed ID: 31863731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of timing in the treatment of spinal cord injury.
    Saghazadeh A; Rezaei N
    Biomed Pharmacother; 2017 Aug; 92():128-139. PubMed ID: 28535416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention.
    Hayta E; Elden H
    J Chem Neuroanat; 2018 Jan; 87():25-31. PubMed ID: 28803968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats.
    Haider T; Höftberger R; Rüger B; Mildner M; Blumer R; Mitterbauer A; Buchacher T; Sherif C; Altmann P; Redl H; Gabriel C; Gyöngyösi M; Fischer MB; Lubec G; Ankersmit HJ
    Exp Neurol; 2015 May; 267():230-42. PubMed ID: 25797576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vascular dysfunctions following spinal cord injury.
    Popa C; Popa F; Grigorean VT; Onose G; Sandu AM; Popescu M; Burnei G; Strambu V; Sinescu C
    J Med Life; 2010; 3(3):275-85. PubMed ID: 20945818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Managing inflammation after spinal cord injury through manipulation of macrophage function.
    Ren Y; Young W
    Neural Plast; 2013; 2013():945034. PubMed ID: 24288627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anthropometric Prediction of Visceral Adiposity in Persons With Spinal Cord Injury.
    Gorgey AS; Ennasr AN; Farkas GJ; Gater DR
    Top Spinal Cord Inj Rehabil; 2021; 27(1):23-35. PubMed ID: 33814881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systemic Complications of Spinal Cord Injury.
    Sweis R; Biller J
    Curr Neurol Neurosci Rep; 2017 Feb; 17(2):8. PubMed ID: 28188542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cervical spinal cord injury-induced neuropathic pain in male mice is associated with a persistent pro-inflammatory macrophage/microglial response in the superficial dorsal horn.
    Brown EV; Falnikar A; Heinsinger N; Cheng L; Andrews CE; DeMarco M; Lepore AC
    Exp Neurol; 2021 Sep; 343():113757. PubMed ID: 33991526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury.
    Hulsebosch CE
    Exp Neurol; 2008 Nov; 214(1):6-9. PubMed ID: 18708053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Update on critical care for acute spinal cord injury in the setting of polytrauma.
    Yue JK; Winkler EA; Rick JW; Deng H; Partow CP; Upadhyayula PS; Birk HS; Chan AK; Dhall SS
    Neurosurg Focus; 2017 Nov; 43(5):E19. PubMed ID: 29088951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies.
    Paterniti I; Impellizzeri D; Di Paola R; Esposito E; Gladman S; Yip P; Priestley JV; Michael-Titus AT; Cuzzocrea S
    J Neuroinflammation; 2014 Jan; 11():6. PubMed ID: 24405628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.