BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29340363)

  • 1. Central-metal effect on intramolecular vibrational energy transfer of M(CO)
    Yang F; Dong X; Feng M; Zhao J; Wang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3637-3647. PubMed ID: 29340363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Infrared Study of (13)C-Natural Abundant Vibrational Transition Reveals Intramolecular Vibrational Redistribution Rather than Fluxional Exchange in Mn(CO)5Br.
    Yang F; Zhao J; Wang J
    J Phys Chem B; 2016 Feb; 120(7):1304-11. PubMed ID: 26836759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Intramolecular Vibrational Excitonic Energy Transfer in Ru
    Dong X; Yang F; Zhao J; Wang J
    J Phys Chem B; 2018 Jan; 122(3):1296-1305. PubMed ID: 29275631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.
    Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K
    Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional infrared spectroscopy of metal carbonyls.
    Baiz CR; McRobbie PL; Anna JM; Geva E; Kubarych KJ
    Acc Chem Res; 2009 Sep; 42(9):1395-404. PubMed ID: 19453102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of ground and excited state vibrational relaxation and energy transfer in transition metal carbonyls.
    Delor M; Sazanovich IV; Towrie M; Spall SJ; Keane T; Blake AJ; Wilson C; Meijer AJ; Weinstein JA
    J Phys Chem B; 2014 Oct; 118(40):11781-91. PubMed ID: 25198700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the intramolecular vibrational energy transfer and structural dynamics of anionic ligands in a photo-catalytic CO
    Liu Q; Zhang Y; Zhang Q; Wei Q; Zhou D; Wu G; Cai K; Yuan K; Bian H
    Phys Chem Chem Phys; 2019 Oct; 21(41):23026-23035. PubMed ID: 31599895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond IR-UV pump-probe spectroscopic study on the vibrational energy flow in isolated molecules and clusters.
    Yamada Y; Katsumoto Y; Ebata T
    Phys Chem Chem Phys; 2007 Mar; 9(10):1170-85. PubMed ID: 17325763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Anharmonic Vibrational Modes of Quinones with Two-Dimensional Infrared Spectroscopy.
    Cyran JD; Nite JM; Krummel AT
    J Phys Chem B; 2015 Jul; 119(29):8917-25. PubMed ID: 25697689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.
    Fedoseeva M; Delor M; Parker SC; Sazanovich IV; Towrie M; Parker AW; Weinstein JA
    Phys Chem Chem Phys; 2015 Jan; 17(3):1688-96. PubMed ID: 25463745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational relaxation by methylated xanthines in solution: Insights from 2D IR spectroscopy and calculations.
    Hanes AT; Grieco C; Lalisse RF; Hadad CM; Kohler B
    J Chem Phys; 2023 Jan; 158(4):044302. PubMed ID: 36725522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast vibrational dynamics of a solute correlates with dynamics of the solvent.
    Crum VF; Kiefer LM; Kubarych KJ
    J Chem Phys; 2021 Oct; 155(13):134502. PubMed ID: 34624983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline.
    Yamada Y; Okano J; Mikami N; Ebata T
    J Chem Phys; 2005 Sep; 123(12):124316. PubMed ID: 16392491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy.
    Slenkamp KM; Lynch MS; Van Kuiken BE; Brookes JF; Bannan CC; Daifuku SL; Khalil M
    J Chem Phys; 2014 Feb; 140(8):084505. PubMed ID: 24588183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum chemistry-based analysis of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl].
    Paulat F; Praneeth VK; Näther C; Lehnert N
    Inorg Chem; 2006 Apr; 45(7):2835-56. PubMed ID: 16562940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. I. Intramolecular vibrational energy redistribution of the OH and CH stretching vibrations of bare phenol.
    Yamada Y; Ebata T; Kayano M; Mikami N
    J Chem Phys; 2004 Apr; 120(16):7400-9. PubMed ID: 15267650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable-energy photoelectron spectroscopy of substituted rhenium and manganese pentacarbonyls: molecular orbital assignments and the interatomic resonant effect.
    Hu YF; Bancroft GM; Tan KH
    Inorg Chem; 2000 Mar; 39(6):1255-64. PubMed ID: 12526417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces.
    Ge A; Rudshteyn B; Zhu J; Maurer RJ; Batista VS; Lian T
    J Phys Chem Lett; 2018 Jan; 9(2):406-412. PubMed ID: 29227669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.