These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29340382)

  • 1. Tuning the indirect-direct band gap transition in the MoS
    Wu HH; Meng Q; Huang H; Liu CT; Wang XL
    Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and electronic properties of MoS2 nanotubes.
    Seifert G; Terrones H; Terrones M; Jungnickel G; Frauenheim T
    Phys Rev Lett; 2000 Jul; 85(1):146-9. PubMed ID: 10991180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.
    Lu N; Guo H; Wang L; Wu X; Zeng XC
    Nanoscale; 2014 May; 6(9):4566-71. PubMed ID: 24676364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles.
    Su X; Zhang R; Guo C; Guo M; Ren Z
    Phys Chem Chem Phys; 2014 Jan; 16(4):1393-8. PubMed ID: 24296949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Structures of AlGaN2 Nanotubes and AlN-GaN Nanotube Superlattice.
    Pan H; Feng YP; Lin J
    J Chem Theory Comput; 2008 May; 4(5):703-7. PubMed ID: 26621085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A natural indirect-to-direct band gap transition in artificially fabricated MoS
    Zhou J; Cui J; Du S; Zhao Z; Guo J; Li S; Zhang W; Liu N; Li X; Bai Q; Guo Y; Mi S; Cheng Z; He L; Nie JC; Yang Y; Dou R
    Nanoscale; 2023 May; 15(17):7792-7802. PubMed ID: 37021968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions.
    DybaƂa F; Polak MP; Kopaczek J; Scharoch P; Wu K; Tongay S; Kudrawiec R
    Sci Rep; 2016 May; 6():26663. PubMed ID: 27215469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-Vacancy induced indirect-to-direct band gap transition in multilayer MoS
    Zhu B; Lang J; Hu YH
    Phys Chem Chem Phys; 2020 Nov; 22(44):26005-26014. PubMed ID: 33169774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Coupling Behavior of Stacked Heterostructures Based on MoS
    Wang F; Wang J; Guo S; Zhang J; Hu Z; Chu J
    Sci Rep; 2017 Mar; 7():44712. PubMed ID: 28303932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Huang B
    Phys Chem Chem Phys; 2016 Jun; 18(23):15632-8. PubMed ID: 27220413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties.
    Komsa HP; Krasheninnikov AV
    J Phys Chem Lett; 2012 Dec; 3(23):3652-6. PubMed ID: 26291001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Photocatalytic Water Splitting Performance of Armchair MoSSe Nanotubes Realized by Polarization Engineering.
    Zhang J; Tang X; Chen M; Ma D; Ju L
    Inorg Chem; 2022 Oct; 61(43):17353-17361. PubMed ID: 36257300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures.
    Yomogida Y; Nagano M; Liu Z; Ueji K; Rahman MA; Ahad A; Ihara A; Nishidome H; Yagi T; Nakanishi Y; Miyata Y; Yanagi K
    Nano Lett; 2023 Nov; 23(22):10103-10109. PubMed ID: 37843011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Dependence of the Indirect Gap and the Direct Optical Transitions at the High-Symmetry Point of the Brillouin Zone and Band Nesting in MoS
    Kopaczek J; Zelewski S; Yumigeta K; Sailus R; Tongay S; Kudrawiec R
    J Phys Chem C Nanomater Interfaces; 2022 Mar; 126(12):5665-5674. PubMed ID: 35392435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Electronic Structure of Armchair MoS
    Zhang L; Wan L; Yu Y; Wang B; Xu F; Wei Y; Zhao Y
    J Phys Chem C Nanomater Interfaces; 2015; 119(38):22164-22171. PubMed ID: 26331336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect-direct band gap transition through electric tuning in bilayer MoS2.
    Zhang ZY; Si MS; Wang YH; Gao XP; Sung D; Hong S; He J
    J Chem Phys; 2014 May; 140(17):174707. PubMed ID: 24811655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Evaluation of the Morphology of WS
    Piskunov S; Lisovski O; Zhukovskii YF; D'yachkov PN; Evarestov RA; Kenmoe S; Spohr E
    ACS Omega; 2019 Jan; 4(1):1434-1442. PubMed ID: 31459410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.