These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29340386)

  • 1. On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits.
    Cho Y; Oakland DN; Lee SA; Schafer WR; Lu H
    Lab Chip; 2018 Feb; 18(4):601-609. PubMed ID: 29340386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Caenorhabditis elegans gentle and harsh touch response behavior using a multiplexed hydraulic microfluidic device.
    McClanahan PD; Xu JH; Fang-Yen C
    Integr Biol (Camb); 2017 Oct; 9(10):800-809. PubMed ID: 28914311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish.
    Mondal S; Ahlawat S; Koushika SP
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile size-dependent sorting of C. elegans nematodes and embryos using a tunable microfluidic filter structure.
    Dong L; Cornaglia M; Lehnert T; Gijs MA
    Lab Chip; 2016 Feb; 16(3):574-85. PubMed ID: 26755420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-stimulation strategy in a micro-chip for the investigation of mechanical associative learning behavior of C. elegans.
    Wang Y; Wang X; Ge A; Hu L; Du W; Liu BF
    Talanta; 2020 Aug; 215():120900. PubMed ID: 32312445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in C. elegans.
    Rouse T; Aubry G; Cho Y; Zimmer M; Lu H
    Lab Chip; 2018 Jan; 18(3):505-513. PubMed ID: 29313542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. elegans.
    Fehlauer H; Nekimken AL; Kim AA; Pruitt BL; Goodman MB; Krieg M
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Devices in Advanced Caenorhabditis elegans Research.
    Muthaiyan Shanmugam M; Subhra Santra T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27490525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WormSpace
    Yang Q; Zhong R; Chang W; Chen K; Wang M; Yuan S; Liang Z; Wang W; Wang C; Tong G; Zhang T; Sun Y
    Lab Chip; 2024 Jul; 24(14):3388-3402. PubMed ID: 38818738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic approach to correlate
    Wan J; Ding JL; Lu H
    Lab Chip; 2024 May; 24(10):2811-2824. PubMed ID: 38700452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term C. elegans immobilization enables high resolution developmental studies in vivo.
    Berger S; Lattmann E; Aegerter-Wilmsen T; Hengartner M; Hajnal A; deMello A; Casadevall i Solvas X
    Lab Chip; 2018 May; 18(9):1359-1368. PubMed ID: 29652050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans.
    Aubry G; Zhan M; Lu H
    Lab Chip; 2015 Mar; 15(6):1424-31. PubMed ID: 25622546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans.
    Cho Y; Porto DA; Hwang H; Grundy LJ; Schafer WR; Lu H
    Lab Chip; 2017 Jul; 17(15):2609-2618. PubMed ID: 28660945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory and practice of using cell strainers to sort Caenorhabditis elegans by size.
    Lanier VJ; White AM; Faumont S; Lockery SR
    PLoS One; 2023; 18(2):e0280999. PubMed ID: 36757993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans.
    Rose JK; Sangha S; Rai S; Norman KR; Rankin CH
    J Neurosci; 2005 Aug; 25(31):7159-68. PubMed ID: 16079398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection and manipulation of sleep in C. elegans reveals depolarization of a sleep-active neuron during mechanical stimulation-induced sleep deprivation.
    Spies J; Bringmann H
    Sci Rep; 2018 Jun; 8(1):9732. PubMed ID: 29950594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic-based imaging of complete Caenorhabditis elegans larval development.
    Berger S; Spiri S; deMello A; Hajnal A
    Development; 2021 Jul; 148(18):. PubMed ID: 34170296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWC
    Caprini D; Schwartz S; Lanza E; Milanetti E; Lucente V; Ferrarese G; Chiodo L; Nicoletti M; Folli V
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100927. PubMed ID: 34423577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Larsen E; Lawler D; White H; Albrecht DR
    Methods Mol Biol; 2022; 2468():293-318. PubMed ID: 35320572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.