These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29340414)

  • 1. Nanoparticle separation based on size-dependent aggregation of nanoparticles due to the critical Casimir effect.
    Guo H; Stan G; Liu Y
    Soft Matter; 2018 Feb; 14(8):1311-1318. PubMed ID: 29340414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration and size effects on the size-selective particle purification method using the critical Casimir force.
    Villanueva-Valencia JR; Guo H; Castañeda-Priego R; Liu Y
    Phys Chem Chem Phys; 2021 Feb; 23(7):4404-4412. PubMed ID: 33594400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the effective interaction between silica colloidal particles near the critical point of a binary solvent by small angle neutron scattering.
    Wang Z; Guo H; Liu Y; Wang X
    J Chem Phys; 2018 Aug; 149(8):084905. PubMed ID: 30193470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Casimir interactions between colloids around the critical point of binary solvents.
    Stuij SG; Labbé-Laurent M; Kodger TE; Maciołek A; Schall P
    Soft Matter; 2017 Aug; 13(31):5233-5249. PubMed ID: 28574564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of colloidal aggregation by critical Casimir forces.
    Bonn D; Otwinowski J; Sacanna S; Guo H; Wegdam G; Schall P
    Phys Rev Lett; 2009 Oct; 103(15):156101. PubMed ID: 19905653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of critical Casimir forces.
    Hertlein C; Helden L; Gambassi A; Dietrich S; Bechinger C
    Nature; 2008 Jan; 451(7175):172-5. PubMed ID: 18185584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Many-body critical Casimir interactions in colloidal suspensions.
    Hobrecht H; Hucht A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042315. PubMed ID: 26565248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling critical Casimir force induced self-assembly experiments on patchy colloidal dumbbells.
    Newton AC; Nguyen TA; Veen SJ; Kraft DJ; Schall P; Bolhuis PG
    Soft Matter; 2017 Jul; 13(28):4903-4915. PubMed ID: 28643833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and aggregation of colloids immersed in critical solvents.
    Mohry TF; Maciołek A; Dietrich S
    J Chem Phys; 2012 Jun; 136(22):224903. PubMed ID: 22713069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface.
    Toldin FP; Tröndle M; Dietrich S
    J Phys Condens Matter; 2015 Jun; 27(21):214010. PubMed ID: 25966039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the dynamics of colloidal particles by critical Casimir forces.
    Magazzù A; Callegari A; Staforelli JP; Gambassi A; Dietrich S; Volpe G
    Soft Matter; 2019 Mar; 15(10):2152-2162. PubMed ID: 30675607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Casimir forces in colloidal suspensions on chemically patterned surfaces.
    Soyka F; Zvyagolskaya O; Hertlein C; Helden L; Bechinger C
    Phys Rev Lett; 2008 Nov; 101(20):208301. PubMed ID: 19113384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancements toward the greener processing of engineered nanomaterials--effect of core size on the dispersibility and transport of gold nanocrystals in near-critical solvents.
    Fernandez CA; Bekhazi JG; Hoppes EM; Wiacek RJ; Fryxell GE; Bays JT; Warner MG; Wang C; Hutchison JE; Addleman RS
    Small; 2009 Apr; 5(8):961-9. PubMed ID: 19242951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Patchy Bonds Induced by Critical Casimir Forces.
    Nguyen TA; Newton A; Kraft DJ; Bolhuis PG; Schall P
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29099788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Casimir forces for colloidal assembly.
    Nguyen VD; Dang MT; Nguyen TA; Schall P
    J Phys Condens Matter; 2016 Feb; 28(4):043001. PubMed ID: 26750980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical casimir forces and colloidal phase transitions in a near-critical solvent: a simple model reveals a rich phase diagram.
    Edison JR; Tasios N; Belli S; Evans R; van Roij R; Dijkstra M
    Phys Rev Lett; 2015 Jan; 114(3):038301. PubMed ID: 25659025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonadditivity of critical Casimir forces.
    Paladugu S; Callegari A; Tuna Y; Barth L; Dietrich S; Gambassi A; Volpe G
    Nat Commun; 2016 Apr; 7():11403. PubMed ID: 27097797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium critical Casimir effect in binary fluids.
    Furukawa A; Gambassi A; Dietrich S; Tanaka H
    Phys Rev Lett; 2013 Aug; 111(5):055701. PubMed ID: 23952419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneity-Induced Casimir Transport of Nanoparticles.
    Bao F; Shi K; Cao G; Evans JS; He S
    Phys Rev Lett; 2018 Sep; 121(13):130401. PubMed ID: 30312057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling colloidal phase transitions with critical Casimir forces.
    Nguyen VD; Faber S; Hu Z; Wegdam GH; Schall P
    Nat Commun; 2013; 4():1584. PubMed ID: 23481392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.