BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29340656)

  • 1. Antagonistic effect of Saccharomyces cerevisiae KTP and Issatchenkia occidentalis ApC on hyphal development and adhesion of Candida albicans.
    Lohith K; Anu-Appaiah KA
    Med Mycol; 2018 Nov; 56(8):1023-1032. PubMed ID: 29340656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probiotic Yeasts Inhibit Virulence of Non
    Kunyeit L; Kurrey NK; Anu-Appaiah KA; Rao RP
    mBio; 2019 Oct; 10(5):. PubMed ID: 31615960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation.
    Krasowska A; Murzyn A; Dyjankiewicz A; Łukaszewicz M; Dziadkowiec D
    FEMS Yeast Res; 2009 Dec; 9(8):1312-21. PubMed ID: 19732158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary Metabolites from Food-Derived Yeasts Inhibit Virulence of Candida albicans.
    Kunyeit L; Kurrey NK; Anu-Appaiah KA; Rao RP
    mBio; 2021 Aug; 12(4):e0189121. PubMed ID: 34399611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis for probiotic yeast phenotypes revealed by nanopore sequencing.
    Collins JH; Kunyeit L; Weintraub S; Sharma N; White C; Haq N; Anu-Appaiah KA; Rao RP; Young EM
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37103477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Saccharomyces boulardii on Candida albicans-infected human intestinal cell lines Caco-2 and Intestin 407.
    Murzyn A; Krasowska A; Augustyniak D; Majkowska-Skrobek G; Łukaszewicz M; Dziadkowiec D
    FEMS Microbiol Lett; 2010 Sep; 310(1):17-23. PubMed ID: 20629753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans.
    Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M
    Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human oral keratinocyte E-cadherin degradation by Candida albicans and Candida glabrata.
    Pärnänen P; Meurman JH; Samaranayake L; Virtanen I
    J Oral Pathol Med; 2010 Mar; 39(3):275-8. PubMed ID: 20359311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.
    Pericolini E; Gabrielli E; Ballet N; Sabbatini S; Roselletti E; Cayzeele Decherf A; Pélerin F; Luciano E; Perito S; Jüsten P; Vecchiarelli A
    Virulence; 2017 Jan; 8(1):74-90. PubMed ID: 27435998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.
    Murzyn A; Krasowska A; Stefanowicz P; Dziadkowiec D; Łukaszewicz M
    PLoS One; 2010 Aug; 5(8):e12050. PubMed ID: 20706577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodelling enzyme, is required for adhesion and invasion.
    Calderon J; Zavrel M; Ragni E; Fonzi WA; Rupp S; Popolo L
    Microbiology (Reading); 2010 Aug; 156(Pt 8):2484-2494. PubMed ID: 20430812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence.
    Ariyachet C; Solis NV; Liu Y; Prasadarao NV; Filler SG; McBride AE
    Infect Immun; 2013 Apr; 81(4):1267-76. PubMed ID: 23381995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Candida albicans Hwp2p can complement the lack of filamentation of a Saccharomyces cerevisiae flo11 null strain.
    Younes SS; Khalaf RA
    Microbiology (Reading); 2013 Jun; 159(Pt 6):1160-1164. PubMed ID: 23558263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal.
    Pedersen LL; Owusu-Kwarteng J; Thorsen L; Jespersen L
    Int J Food Microbiol; 2012 Oct; 159(2):144-51. PubMed ID: 23072700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a probiotic yeast for the production and secretion of medium-chain fatty acids antagonistic to an opportunistic pathogen
    Ling H; Liu R; Sam QH; Shen H; Chai LYA; Chang MW
    Front Bioeng Biotechnol; 2023; 11():1090501. PubMed ID: 36923462
    [No Abstract]   [Full Text] [Related]  

  • 17. Germ tube growth of Candida albicans.
    Gow NA
    Curr Top Med Mycol; 1997 Dec; 8(1-2):43-55. PubMed ID: 9504066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Candida albicans polymorphism in interactions with oral epithelial cells.
    Villar CC; Kashleva H; Dongari-Bagtzoglou A
    Oral Microbiol Immunol; 2004 Aug; 19(4):262-9. PubMed ID: 15209998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties.
    Herrero AB; Magnelli P; Mansour MK; Levitz SM; Bussey H; Abeijon C
    Eukaryot Cell; 2004 Dec; 3(6):1423-32. PubMed ID: 15590817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.
    Song W; Wang H; Chen J
    FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.