These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29340853)

  • 1. Do bioresorbable polyesters have antimicrobial properties?
    Gritsch L; Lovell C; Goldmann WH; Boccaccini AR
    J Mater Sci Mater Med; 2018 Jan; 29(2):18. PubMed ID: 29340853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial effect of novel biodegradable and bioresorbable PLDA/Mg composites.
    Fernández-Calderón MC; Cifuentes SC; Pacha-Olivenza MA; Gallardo-Moreno AM; Saldaña L; González-Carrasco JL; Blanco MT; Vilaboa N; González-Martín ML; Pérez-Giraldo C
    Biomed Mater; 2017 Feb; 12(1):015025. PubMed ID: 28211364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking.
    Rizzarelli P; Rapisarda M; Valenti G
    Rapid Commun Mass Spectrom; 2020 Aug; 34 Suppl 2():e8697. PubMed ID: 31834664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties.
    García-Argüelles S; Serrano MC; Gutiérrez MC; Ferrer ML; Yuste L; Rojo F; del Monte F
    Langmuir; 2013 Jul; 29(30):9525-34. PubMed ID: 23808373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and in vitro degradation of bioresorbable knitted stents.
    Nuutinen JP; Välimaa T; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1313-23. PubMed ID: 12555898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymeric capsules obtained via room temperature spray drying: preparation and characterization.
    Stefanescu EA; Stefanescu C; Negulescu II
    J Biomater Appl; 2011 May; 25(8):825-49. PubMed ID: 20511383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial Nanostructured Polyhydroxybutyrate Membranes for Guided Bone Regeneration.
    Karahaliloğlu Z; Ercan B; Taylor EN; Chung S; Denkbaş EB; Webster TJ
    J Biomed Nanotechnol; 2015 Dec; 11(12):2253-63. PubMed ID: 26510318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental assessment of biodegradable polyglycolic and polylactic acid polymers for medical use].
    Kulakov AA; Grigor'ian AS; Arkhipov AV
    Stomatologiia (Mosk); 2013; 92(5):4-8. PubMed ID: 24300698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material modifications enhancing the antibacterial properties of two biodegradable poly(3-hydroxybutyrate) implants.
    Ferlic PW; Nogler M; Weinberg AM; Kühn KD; Liebensteiner M; Coraça-Huber DC
    Biomed Mater; 2020 Dec; 16(1):015030. PubMed ID: 33022662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization.
    Yüksel E; Karakeçili A; Demirtaş TT; Gümüşderelioğlu M
    Int J Biol Macromol; 2016 May; 86():162-8. PubMed ID: 26802245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLA/β-CD-based fibres loaded with quercetin as potential antibacterial dressing materials.
    Kost B; Svyntkivska M; Brzeziński M; Makowski T; Piorkowska E; Rajkowska K; Kunicka-Styczyńska A; Biela T
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110949. PubMed ID: 32199261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalizing calcium phosphate biomaterials with antibacterial silver particles.
    Lee JS; Murphy WL
    Adv Mater; 2013 Feb; 25(8):1173-9. PubMed ID: 23184492
    [No Abstract]   [Full Text] [Related]  

  • 16. Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity.
    Vermet G; Degoutin S; Chai F; Maton M; Flores C; Neut C; Danjou PE; Martel B; Blanchemain N
    Acta Biomater; 2017 Apr; 53():222-232. PubMed ID: 28216296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of Ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties.
    Fortunati E; Mattioli S; Visai L; Imbriani M; Fierro JL; Kenny JM; Armentano I
    Biomacromolecules; 2013 Mar; 14(3):626-36. PubMed ID: 23360180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biodegradable vascularizing membrane: a feasibility study.
    Kaushiva A; Turzhitsky VM; Darmoc M; Backman V; Ameer GA
    Acta Biomater; 2007 Sep; 3(5):631-42. PubMed ID: 17507300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of solvent processing on polyester bioabsorbable polymers.
    Manson J; Dixon D
    J Biomater Appl; 2012 Jan; 26(5):623-34. PubMed ID: 20659960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of antibacterial and anticancer properties of poly(3-hydroxybutyrate) functionalized with different amino compounds.
    Abdelwahab MA; El-Barbary AA; El-Said KS; El Naggar SA; ElKholy HM
    Int J Biol Macromol; 2019 Feb; 122():793-805. PubMed ID: 30416099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.