These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29340853)

  • 21. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production.
    Little H; Themistou E; Clarke SA; Cunningham E; Buchanan F
    J Mater Sci Mater Med; 2017 Dec; 29(1):14. PubMed ID: 29285611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role for interleukin 1alpha in the inhibition of chondrogenesis in autologous implants using polyglycolic acid-polylactic acid scaffolds.
    Rotter N; Ung F; Roy AK; Vacanti M; Eavey RD; Vacanti CA; Bonassar LJ
    Tissue Eng; 2005; 11(1-2):192-200. PubMed ID: 15738674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro hemocompatibility studies of (poly(L-lactide) and poly(L-lactide-co-glycolide) as materials for bioresorbable stents manufacture.
    Szymonowicz M; Rybak Z; Witkiewicz W; Pezowicz C; Filipiak J
    Acta Bioeng Biomech; 2014; 16(4):131-9. PubMed ID: 25739129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel biocatalytic polymer-based antimicrobial coatings as potential ureteral biomaterial: preparation and in vitro performance evaluation.
    Dave RN; Joshi HM; Venugopalan VP
    Antimicrob Agents Chemother; 2011 Feb; 55(2):845-53. PubMed ID: 21135190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial biocompatible bioscaffolds for orthopaedic implants.
    Qureshi AT; Terrell L; Monroe WT; Dasa V; Janes ME; Gimble JM; Hayes DJ
    J Tissue Eng Regen Med; 2014 May; 8(5):386-95. PubMed ID: 22700366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The release of cefazolin and gentamicin from biodegradable PLA/PGA beads.
    Wang G; Liu SJ; Ueng SW; Chan EC
    Int J Pharm; 2004 Apr; 273(1-2):203-12. PubMed ID: 15010144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria.
    Said SS; Aloufy AK; El-Halfawy OM; Boraei NA; El-Khordagui LK
    Eur J Pharm Biopharm; 2011 Sep; 79(1):108-18. PubMed ID: 21396444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(3-hydroxybutyrate)/caffeic acid electrospun fibrous materials coated with polyelectrolyte complex and their antibacterial activity and in vitro antitumor effect against HeLa cells.
    Ignatova MG; Manolova NE; Rashkov IB; Markova ND; Toshkova RA; Georgieva AK; Nikolova EB
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():379-92. PubMed ID: 27157765
    [No Abstract]   [Full Text] [Related]  

  • 29. Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters.
    Coneski PN; Rao KS; Schoenfisch MH
    Biomacromolecules; 2010 Nov; 11(11):3208-15. PubMed ID: 20954726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable materials in arthroscopy.
    Gunja NJ; Athanasiou KA
    Sports Med Arthrosc Rev; 2006 Sep; 14(3):112-9. PubMed ID: 17135957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymer chain scission, oligomer production and diffusion: a two-scale model for degradation of bioresorbable polyesters.
    Han X; Pan J
    Acta Biomater; 2011 Feb; 7(2):538-47. PubMed ID: 20832507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting.
    Fahmy TM; Samstein RM; Harness CC; Mark Saltzman W
    Biomaterials; 2005 Oct; 26(28):5727-36. PubMed ID: 15878378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioresorbable polymers: heading for a new generation of spinal cages.
    Wuisman PI; Smit TH
    Eur Spine J; 2006 Feb; 15(2):133-48. PubMed ID: 16292588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards developing surface eroding poly(alpha-hydroxy acids).
    Xu XJ; Sy JC; Prasad Shastri V
    Biomaterials; 2006 May; 27(15):3021-30. PubMed ID: 16455136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application.
    Iqbal HM; Kyazze G; Locke IC; Tron T; Keshavarz T
    Int J Biol Macromol; 2015 Nov; 81():552-9. PubMed ID: 26314909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Formation of porous biodegradable scaffolds for tissue engineering].
    Hao B; Yin G; She L; Jiang X; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):140-3, 171. PubMed ID: 11951503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties.
    Llorens E; Calderón S; del Valle LJ; Puiggalí J
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():74-84. PubMed ID: 25746248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware.
    Nielson DL; Young NJ; Zelen CM
    Clin Podiatr Med Surg; 2013 Jul; 30(3):283-93. PubMed ID: 23827487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.
    Sun J; Zhu Y; Meng L; Chen P; Shi T; Liu X; Zheng Y
    Acta Biomater; 2016 Nov; 45():387-398. PubMed ID: 27615737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the long-term patency of a transmural heparinized polycaprolactone and poly(D,L-lactic/glycolic acid) scaffold.
    Zhao J; Cheng Z; Quan X; Zhao Z; Lü F; Liu X
    J Surg Res; 2014 Apr; 187(2):394-402. PubMed ID: 24280687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.