These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29341006)

  • 1. Mapping Functional Connectivity in the Rodent Brain Using Electric-Stimulation fMRI.
    Pérez-Cervera L; Caramés JM; Fernández-Mollá LM; Moreno A; Fernández B; Pérez-Montoyo E; Moratal D; Canals S; Pacheco-Torres J
    Methods Mol Biol; 2018; 1718():117-134. PubMed ID: 29341006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.
    Cardenas DP; Muir ER; Huang S; Boley A; Lodge D; Duong TQ
    Neuroimage; 2015 Oct; 119():382-9. PubMed ID: 26143203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T.
    Oliveira ÍAF; van der Zwaag W; Raimondo L; Dumoulin SO; Siero JCW
    Neuroimage; 2021 Feb; 226():117623. PubMed ID: 33301935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submillimeter-resolution fMRI: Toward understanding local neural processing.
    Fukuda M; Poplawsky AJ; Kim SG
    Prog Brain Res; 2016; 225():123-52. PubMed ID: 27130414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of abnormal cerebrovascular reactivity on BOLD fMRI: a preliminary investigation of moyamoya disease.
    Mazerolle EL; Ma Y; Sinclair D; Pike GB
    Clin Physiol Funct Imaging; 2018 Jan; 38(1):87-92. PubMed ID: 27572110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysically based method to deconvolve spatiotemporal neurovascular signals from fMRI data.
    Pang JC; Aquino KM; Robinson PA; Lacy TC; Schira MM
    J Neurosci Methods; 2018 Oct; 308():6-20. PubMed ID: 30026070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New horizons in neurometabolic and neurovascular coupling from calibrated fMRI.
    Shu CY; Sanganahalli BG; Coman D; Herman P; Hyder F
    Prog Brain Res; 2016; 225():99-122. PubMed ID: 27130413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory and optogenetically driven single-vessel fMRI.
    Yu X; He Y; Wang M; Merkle H; Dodd SJ; Silva AC; Koretsky AP
    Nat Methods; 2016 Apr; 13(4):337-40. PubMed ID: 26855362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain region and activity-dependent properties of M for calibrated fMRI.
    Shu CY; Herman P; Coman D; Sanganahalli BG; Wang H; Juchem C; Rothman DL; de Graaf RA; Hyder F
    Neuroimage; 2016 Jan; 125():848-856. PubMed ID: 26529646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI.
    Lundengård K; Cedersund G; Sten S; Leong F; Smedberg A; Elinder F; Engström M
    PLoS Comput Biol; 2016 Jun; 12(6):e1004971. PubMed ID: 27310017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.
    Jiang Y; Hao Y; Zhang Y; Liu J; Wang X; Han J; Fang J; Zhang J; Cui C
    Brain Res; 2012 May; 1457():13-25. PubMed ID: 22541167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invalidation of fMRI experiments secondary to neurovascular uncoupling in patients with cerebrovascular disease.
    Para AE; Sam K; Poublanc J; Fisher JA; Crawley AP; Mikulis DJ
    J Magn Reson Imaging; 2017 Nov; 46(5):1448-1455. PubMed ID: 28152241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between BOLD and neural activity arises from temporally sparse events.
    Zhang X; Pan WJ; Keilholz SD
    Neuroimage; 2020 Feb; 207():116390. PubMed ID: 31785420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BOLD functional MRI in disease and pharmacological studies: room for improvement?
    Iannetti GD; Wise RG
    Magn Reson Imaging; 2007 Jul; 25(6):978-88. PubMed ID: 17499469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.
    Logothetis NK
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1003-37. PubMed ID: 12217171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).
    Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J
    Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional MRI is fundamentally limited by an inadequate understanding of the origin of fMRI signals in tissue. For the proposition.
    Gore JC
    Med Phys; 2003 Nov; 30(11):2859-60. PubMed ID: 14655930
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitative functional MRI: concepts, issues and future challenges.
    Pike GB
    Neuroimage; 2012 Aug; 62(2):1234-40. PubMed ID: 22056462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging.
    Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y
    Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.