BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29341298)

  • 1. Multiple signaling systems target a core set of transition metal homeostasis genes using similar binding motifs.
    Garber ME; Rajeev L; Kazakov AE; Trinh J; Masuno D; Thompson MG; Kaplan N; Luk J; Novichkov PS; Mukhopadhyay A
    Mol Microbiol; 2018 Mar; 107(6):704-717. PubMed ID: 29341298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri.
    Vaccaro BJ; Lancaster WA; Thorgersen MP; Zane GM; Younkin AD; Kazakov AE; Wetmore KM; Deutschbauer A; Arkin AP; Novichkov PS; Wall JD; Adams MW
    Appl Environ Microbiol; 2016 Oct; 82(19):6046-56. PubMed ID: 27474723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of CzcS/CzcR during zinc excess regulates copper tolerance and pyochelin biosynthesis of
    Li T; Cao H; Duan C; Chen S; Xu Z
    Appl Environ Microbiol; 2024 Mar; 90(3):e0232723. PubMed ID: 38376236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa.
    Caille O; Rossier C; Perron K
    J Bacteriol; 2007 Jul; 189(13):4561-8. PubMed ID: 17449606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.
    Bouzat JL; Hoostal MJ
    J Mol Evol; 2013 May; 76(5):267-79. PubMed ID: 23588684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress.
    Liu Z; Xu Z; Chen S; Huang J; Li T; Duan C; Zhang LH; Xu Z
    Microbiol Spectr; 2022 Dec; 10(6):e0284622. PubMed ID: 36416561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons.
    Ng SP; Palombo EA; Bhave M
    J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-regulation and cross-talk of conserved and accessory two-component regulatory systems orchestrate Pseudomonas copper resistance.
    Elsen S; Simon V; Attrée I
    PLoS Genet; 2024 Jun; 20(6):e1011325. PubMed ID: 38861577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc homeostasis in Pseudomonas.
    Ducret V; Gonzalez D; Perron K
    Biometals; 2023 Aug; 36(4):729-744. PubMed ID: 36472780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa.
    Ducret V; Gonzalez MR; Scrignari T; Perron K
    Genes (Basel); 2016 Oct; 7(10):. PubMed ID: 27706108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper homeostasis-related genes in three separate transcriptional units regulated by CsoR in Corynebacterium glutamicum.
    Teramoto H; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3505-17. PubMed ID: 25592736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis.
    Latorre M; Low M; Gárate E; Reyes-Jara A; Murray BE; Cambiazo V; González M
    Metallomics; 2015 Jul; 7(7):1137-45. PubMed ID: 25906431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P(1B)-type ATPase operons.
    Teramoto H; Inui M; Yukawa H
    Biosci Biotechnol Biochem; 2012; 76(10):1952-8. PubMed ID: 23090582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor.
    Cobine P; Wickramasinghe WA; Harrison MD; Weber T; Solioz M; Dameron CT
    FEBS Lett; 1999 Feb; 445(1):27-30. PubMed ID: 10069368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posttranscriptional Regulation by Copper with a New Upstream Open Reading Frame.
    Roy G; Antoine R; Schwartz A; Slupek S; Rivera-Millot A; Boudvillain M; Jacob-Dubuisson F
    mBio; 2022 Aug; 13(4):e0091222. PubMed ID: 35862763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal
    Neubert MJ; Dahlmann EA; Ambrose A; Johnson MDL
    mSphere; 2017; 2(5):. PubMed ID: 29062896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stress response protein Gls24 is induced by copper and interacts with the CopZ copper chaperone of Enterococcus hirae.
    Stoyanov JV; Mancini S; Lu ZH; Mourlane F; Poulsen KR; Wimmer R; Solioz M
    FEMS Microbiol Lett; 2010 Jan; 302(1):69-75. PubMed ID: 19903200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae.
    Magnani D; Solioz M
    Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon.
    White AK; Metcalf WW
    J Bacteriol; 2004 Sep; 186(17):5876-82. PubMed ID: 15317793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.