These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29341319)

  • 41. Structure-Property Relationships of Shape Memory, Semicrystalline Polymers Fabricated by In Situ Polymerization and Crosslinking of Octadecyl Acrylate/Polybutadiene Blends.
    Basak S; Cavicchi KA
    Macromol Rapid Commun; 2023 Jan; 44(1):e2200404. PubMed ID: 35750641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release.
    Nagahama K; Ueda Y; Ouchi T; Ohya Y
    Biomacromolecules; 2009 Jul; 10(7):1789-94. PubMed ID: 19425546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shape memory polymers with high and low temperature resistant properties.
    Xiao X; Kong D; Qiu X; Zhang W; Liu Y; Zhang S; Zhang F; Hu Y; Leng J
    Sci Rep; 2015 Sep; 5():14137. PubMed ID: 26382318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradable shape memory nanocomposites with thermal and magnetic field responsiveness.
    Zhang X; Lu X; Wang Z; Wang J; Sun Z
    J Biomater Sci Polym Ed; 2013; 24(9):1057-70. PubMed ID: 23683038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.
    Liu Y; Li Y; Yang G; Zheng X; Zhou S
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4118-26. PubMed ID: 25647407
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property.
    Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automatically Programmable Shape-Memory Polymers Based on Asymmetric Swelling of Bilayer Structures.
    Tang J; Zhou Y; Wan L; Huang F
    Macromol Rapid Commun; 2018 May; 39(9):e1800039. PubMed ID: 29517176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites.
    Liu Y; Li Y; Chen H; Yang G; Zheng X; Zhou S
    Carbohydr Polym; 2014 Apr; 104():101-8. PubMed ID: 24607166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High strength bioresorbable bone plates: preparation, mechanical properties and in vitro analysis.
    Hasirci V; Lewandrowski KU; Bondre SP; Gresser JD; Trantolo DJ; Wise DL
    Biomed Mater Eng; 2000; 10(1):19-29. PubMed ID: 10950204
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution.
    Friess F; Wischke C; Behl M; Lendlein A
    J Appl Biomater Funct Mater; 2012; 10(3):273-9. PubMed ID: 23242870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tailored poly(ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications.
    Antony GJM; Jarali CS; Aruna ST; Raja S
    J Mech Behav Biomed Mater; 2017 Jan; 65():857-865. PubMed ID: 27810732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Medical applications of shape memory polymers.
    Sokolowski W; Metcalfe A; Hayashi S; Yahia L; Raymond J
    Biomed Mater; 2007 Mar; 2(1):S23-7. PubMed ID: 18458416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resilient amorphous networks prepared by photo-crosslinking high-molecular-weight D,L-lactide and trimethylene carbonate macromers: mechanical properties and shape-memory behavior.
    Sharifi S; Grijpma DW
    Macromol Biosci; 2012 Oct; 12(10):1423-35. PubMed ID: 22965835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shape memory particles capable of controlled geometric and chemical asymmetry made from aliphatic polyesters.
    Brosnan SM; Jackson AM; Wang Y; Ashby VS
    Macromol Rapid Commun; 2014 Oct; 35(19):1653-60. PubMed ID: 25060745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups.
    Wu L; Jin C; Sun X
    Biomacromolecules; 2011 Jan; 12(1):235-41. PubMed ID: 21125994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shape memory polymer network with thermally distinct elasticity and plasticity.
    Zhao Q; Zou W; Luo Y; Xie T
    Sci Adv; 2016 Jan; 2(1):e1501297. PubMed ID: 26824077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Combinational Effect of "Bulk" and "Surface" Shape-Memory Transitions on the Regulation of Cell Alignment.
    Uto K; Aoyagi T; DeForest CA; Hoffman AS; Ebara M
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28169506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-replenishing surfaces.
    Dikić T; Ming W; van Benthem RA; Esteves AC; de With G
    Adv Mater; 2012 Jul; 24(27):3701-4. PubMed ID: 22700365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.