BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 29341325)

  • 1. Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach.
    Romeo V; Maurea S; Cuocolo R; Petretta M; Mainenti PP; Verde F; Coppola M; Dell'Aversana S; Brunetti A
    J Magn Reson Imaging; 2018 Jul; 48(1):198-204. PubMed ID: 29341325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images.
    Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D
    J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning analysis of adrenal lesions: preliminary study evaluating texture analysis in the differentiation of adrenal lesions.
    Altay C; Başara Akın I; Özgül AH; Adıyaman SC; Yener AS; Seçil M
    Diagn Interv Radiol; 2023 Mar; 29(2):234-243. PubMed ID: 36987841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Texture Analysis Be Used to Distinguish Benign From Malignant Adrenal Nodules on Unenhanced CT, Contrast-Enhanced CT, or In-Phase and Opposed-Phase MRI?
    Ho LM; Samei E; Mazurowski MA; Zheng Y; Allen BC; Nelson RC; Marin D
    AJR Am J Roentgenol; 2019 Mar; 212(3):554-561. PubMed ID: 30620676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis.
    Wu M; Krishna S; Thornhill RE; Flood TA; McInnes MDF; Schieda N
    J Magn Reson Imaging; 2019 Sep; 50(3):940-950. PubMed ID: 30701625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of dynamic post-contrast T1-w MRI sequence to characterize lipid-rich and lipid-poor adrenal adenomas in comparison to non-adenoma lesions: preliminary results.
    Romeo V; Maurea S; Guarino S; Mainenti PP; Liuzzi R; Petretta M; Cozzolino I; Klain M; Brunetti A
    Abdom Radiol (NY); 2018 Aug; 43(8):2119-2129. PubMed ID: 29214448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings.
    Shiradkar R; Ghose S; Jambor I; Taimen P; Ettala O; Purysko AS; Madabhushi A
    J Magn Reson Imaging; 2018 Dec; 48(6):1626-1636. PubMed ID: 29734484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective staging of fibrosis by the selected texture features of liver: Which one is better, CT or MR imaging?
    Zhang X; Gao X; Liu BJ; Ma K; Yan W; Liling L; Yuhong H; Fujita H
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():227-36. PubMed ID: 26455963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI.
    Fathi Kazerooni A; Nabil M; Zeinali Zadeh M; Firouznia K; Azmoudeh-Ardalan F; Frangi AF; Davatzikos C; Saligheh Rad H
    J Magn Reson Imaging; 2018 Oct; 48(4):938-950. PubMed ID: 29412496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI radiomics-based machine-learning classification of bone chondrosarcoma.
    Gitto S; Cuocolo R; Albano D; Chianca V; Messina C; Gambino A; Ugga L; Cortese MC; Lazzara A; Ricci D; Spairani R; Zanchetta E; Luzzati A; Brunetti A; Parafioriti A; Sconfienza LM
    Eur J Radiol; 2020 Jul; 128():109043. PubMed ID: 32438261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation.
    Kocak B; Yardimci AH; Bektas CT; Turkcanoglu MH; Erdim C; Yucetas U; Koca SB; Kilickesmez O
    Eur J Radiol; 2018 Oct; 107():149-157. PubMed ID: 30292260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa.
    Romeo V; Ricciardi C; Cuocolo R; Stanzione A; Verde F; Sarno L; Improta G; Mainenti PP; D'Armiento M; Brunetti A; Maurea S
    Magn Reson Imaging; 2019 Dec; 64():71-76. PubMed ID: 31102613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.
    Bickelhaupt S; Paech D; Kickingereder P; Steudle F; Lederer W; Daniel H; Götz M; Gählert N; Tichy D; Wiesenfarth M; Laun FB; Maier-Hein KH; Schlemmer HP; Bonekamp D
    J Magn Reson Imaging; 2017 Aug; 46(2):604-616. PubMed ID: 28152264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier.
    Chan I; Wells W; Mulkern RV; Haker S; Zhang J; Zou KH; Maier SE; Tempany CM
    Med Phys; 2003 Sep; 30(9):2390-8. PubMed ID: 14528961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable angle gray level co-occurrence matrix analysis of T
    Peuna A; Hekkala J; Haapea M; Podlipská J; Guermazi A; Saarakkala S; Nieminen MT; Lammentausta E
    J Magn Reson Imaging; 2018 May; 47(5):1316-1327. PubMed ID: 29091314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative versus quantitative lumbar spinal stenosis grading by machine learning supported texture analysis-Experience from the LSOS study cohort.
    Huber FA; Stutz S; Vittoria de Martini I; Mannil M; Becker AS; Winklhofer S; Burgstaller JM; Guggenberger R
    Eur J Radiol; 2019 May; 114():45-50. PubMed ID: 31005175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of lipid-poor adrenal adenomas from non-adenomas with magnetic resonance imaging: Utility of dynamic, contrast enhancement and single-shot T2-weighted sequences.
    Becker-Weidman D; Kalb B; Mittal PK; Harri PA; Arif-Tiwari H; Farris AB; Chen Z; Sungjin K; Martin DR
    Eur J Radiol; 2015 Nov; 84(11):2045-51. PubMed ID: 26233268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI.
    Kocak B; Durmaz ES; Kadioglu P; Polat Korkmaz O; Comunoglu N; Tanriover N; Kocer N; Islak C; Kizilkilic O
    Eur Radiol; 2019 Jun; 29(6):2731-2739. PubMed ID: 30506213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning.
    Ugga L; Cuocolo R; Solari D; Guadagno E; D'Amico A; Somma T; Cappabianca P; Del Basso de Caro ML; Cavallo LM; Brunetti A
    Neuroradiology; 2019 Dec; 61(12):1365-1373. PubMed ID: 31375883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.