These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-Iminoesters through Auto-Tandem Catalysis. Kondoh A; Terada M Org Lett; 2018 Sep; 20(17):5309-5313. PubMed ID: 30110169 [TBL] [Abstract][Full Text] [Related]
6. Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Kondoh A; Iino A; Ishikawa S; Aoki T; Terada M Chemistry; 2018 Oct; 24(57):15246-15253. PubMed ID: 30113749 [TBL] [Abstract][Full Text] [Related]
7. Formal Umpolung Addition of Phosphites to 2-Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]-Phospha-Brook Rearrangement. Kondoh A; Hirozane T; Terada M Chemistry; 2022 Jul; 28(42):e202201240. PubMed ID: 35543698 [TBL] [Abstract][Full Text] [Related]
8. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Kondoh A; Aoki T; Terada M Chemistry; 2017 Feb; 23(12):2769-2773. PubMed ID: 27918634 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective intramolecular cyclization of alkynyl esters catalyzed by a chiral Brønsted base. Kondoh A; Tran HT; Kimura K; Terada M Chem Commun (Camb); 2016 Apr; 52(33):5726-9. PubMed ID: 27043300 [TBL] [Abstract][Full Text] [Related]
10. Organocatalytic Arylation of α-Ketoesters Based on Umpolung Strategy: Phosphazene-Catalyzed S Kondoh A; Aoki T; Terada M Chemistry; 2018 Sep; 24(50):13110-13113. PubMed ID: 29972597 [TBL] [Abstract][Full Text] [Related]
11. Intramolecular addition of benzyl anion to alkyne utilizing [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. Kondoh A; Ozawa R; Aoki T; Terada M Org Biomol Chem; 2017 Sep; 15(35):7277-7281. PubMed ID: 28849855 [TBL] [Abstract][Full Text] [Related]
12. Catalytic asymmetric umpolung reactions of imines. Wu Y; Hu L; Li Z; Deng L Nature; 2015 Jul; 523(7561):445-50. PubMed ID: 26201597 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis. Kondoh A; Terada M Chemistry; 2022 Aug; 28(45):e202201198. PubMed ID: 35621328 [TBL] [Abstract][Full Text] [Related]
14. Enamides and enecarbamates as nucleophiles in stereoselective C-C and C-N bond-forming reactions. Matsubara R; Kobayashi S Acc Chem Res; 2008 Feb; 41(2):292-301. PubMed ID: 18281949 [TBL] [Abstract][Full Text] [Related]
15. Brønsted Base-Catalyzed Transformation of α,β-Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety. Kondoh A; Tasato N; Aoki T; Terada M Org Lett; 2020 Jul; 22(13):5170-5175. PubMed ID: 32610917 [TBL] [Abstract][Full Text] [Related]
16. Organometal additions to alpha-iminoesters: N-alkylation via umpolung. Dickstein JS; Kozlowski MC Chem Soc Rev; 2008 Jun; 37(6):1166-73. PubMed ID: 18497929 [TBL] [Abstract][Full Text] [Related]
18. N-Heterocyclic Carbene Catalysis Exploiting Oxidative Imine Umpolung for the Generation of Imidoyl Azoliums. Das TK; Madica K; Krishnan J; Marelli UK; Biju AT J Org Chem; 2020 Apr; 85(7):5114-5121. PubMed ID: 32160741 [TBL] [Abstract][Full Text] [Related]
19. [Development of new synthetic reactions featuring tandem carbon-carbon bond formation]. Takeda K Yakugaku Zasshi; 2007 Sep; 127(9):1399-418. PubMed ID: 17827921 [TBL] [Abstract][Full Text] [Related]
20. Origins of enantioselectivity in the chiral Brønsted acid catalyzed hydrophosphonylation of imines. Shi FQ; Song BA Org Biomol Chem; 2009 Apr; 7(7):1292-8. PubMed ID: 19300812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]