These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29341609)

  • 1. Probing and Quantifying the Food-Borne Pathogens and Toxins: From In Vitro to In Vivo.
    Liu JM; Wang ZH; Ma H; Wang S
    J Agric Food Chem; 2018 Feb; 66(5):1061-1066. PubMed ID: 29341609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foodborne pathogens and their toxins.
    Martinović T; Andjelković U; Gajdošik MŠ; Rešetar D; Josić D
    J Proteomics; 2016 Sep; 147():226-235. PubMed ID: 27109345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety.
    Gao R; Liu X; Xiong Z; Wang G; Ai L
    Food Res Int; 2024 Oct; 193():114767. PubMed ID: 39160035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenome-based surveillance and diagnostic approaches to studying the microbial ecology of food production and processing environments.
    Doyle CJ; O'Toole PW; Cotter PD
    Environ Microbiol; 2017 Nov; 19(11):4382-4391. PubMed ID: 28730722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical sensing for real-time detection of food-borne pathogens in fresh produce using machine learning.
    Sharma S; Tharani L
    Sci Prog; 2024; 107(2):368504231223029. PubMed ID: 38773741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Tools To Study Preharvest Food Safety Challenges.
    Kumar D; Thakur S
    Microbiol Spectr; 2018 Feb; 6(1):. PubMed ID: 29451114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.
    Mangal M; Bansal S; Sharma SK; Gupta RK
    Crit Rev Food Sci Nutr; 2016 Jul; 56(9):1568-84. PubMed ID: 25830555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food.
    Lim MC; Kim YR
    J Microbiol Biotechnol; 2016 Sep; 26(9):1505-16. PubMed ID: 27363472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progresses in Nanobiosensing for Food Safety Analysis.
    Yang T; Huang H; Zhu F; Lin Q; Zhang L; Liu J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors.
    Flores-Ramírez AY; González-Estrada RR; Chacón-López MA; García-Magaña ML; Montalvo-González E; Álvarez-López A; Rodríguez-López A; López-García UM
    Anal Biochem; 2024 Oct; 693():115600. PubMed ID: 38964698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety.
    Denes T; Wiedmann M
    Curr Opin Biotechnol; 2014 Apr; 26():45-9. PubMed ID: 24679257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in rapid detection methods for foodborne pathogens.
    Zhao X; Lin CW; Wang J; Oh DH
    J Microbiol Biotechnol; 2014 Mar; 24(3):297-312. PubMed ID: 24375418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction to supplement issue PathogenCombat: reducing food borne disease in Europe--control and prevention of emerging pathogens at cellular and molecular level throughout the food chain.
    Jakobsen M
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S1-3. PubMed ID: 20638144
    [No Abstract]   [Full Text] [Related]  

  • 14. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges.
    Umesha S; Manukumar HM
    Crit Rev Food Sci Nutr; 2018 Jan; 58(1):84-104. PubMed ID: 26745757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Biosensing of Foodborne Pathogens.
    Ullah N; Bruce-Tagoe TA; Asamoah GA; Danquah MK
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.
    Sulakvelidze A
    J Sci Food Agric; 2013 Oct; 93(13):3137-46. PubMed ID: 23670852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman spectroscopy applied to food safety.
    Craig AP; Franca AS; Irudayaraj J
    Annu Rev Food Sci Technol; 2013; 4():369-80. PubMed ID: 23297774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Contributions and limits of bacteriology and mycology in food toxicology].
    Lafont P
    Ann Nutr Aliment; 1974; 28(4):243-8. PubMed ID: 4619304
    [No Abstract]   [Full Text] [Related]  

  • 19. Technology uses live cells to detect foodborne pathogens, toxins.
    J Environ Health; 2008; 71(1):52. PubMed ID: 18724505
    [No Abstract]   [Full Text] [Related]  

  • 20. Detection of toxins involved in foodborne diseases caused by Gram-positive bacteria.
    Rajkovic A; Jovanovic J; Monteiro S; Decleer M; Andjelkovic M; Foubert A; Beloglazova N; Tsilla V; Sas B; Madder A; De Saeger S; Uyttendaele M
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1605-1657. PubMed ID: 33337102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.