These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 29341683)

  • 1. Theory of Thermal Relaxation of Electrons in Semiconductors.
    Sadasivam S; Chan MKY; Darancet P
    Phys Rev Lett; 2017 Sep; 119(13):136602. PubMed ID: 29341683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe_{2}.
    Waldecker L; Bertoni R; Hübener H; Brumme T; Vasileiadis T; Zahn D; Rubio A; Ernstorfer R
    Phys Rev Lett; 2017 Jul; 119(3):036803. PubMed ID: 28777602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft surfaces of nanomaterials enable strong phonon interactions.
    Bozyigit D; Yazdani N; Yarema M; Yarema O; Lin WM; Volk S; Vuttivorakulchai K; Luisier M; Juranyi F; Wood V
    Nature; 2016 Mar; 531(7596):618-22. PubMed ID: 26958836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron-phonon coupling from the theoretical and experimental viewpoints.
    Sjakste J; Tanimura K; Barbarino G; Perfetti L; Vast N
    J Phys Condens Matter; 2018 Sep; 30(35):353001. PubMed ID: 30084390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot-phonon effects in photo-excited wide-bandgap semiconductors.
    Herrfurth O; Krüger E; Blaurock S; Krautscheid H; Grundmann M
    J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33761467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlocal electron-phonon coupling in the pentacene crystal: beyond the Γ-point approximation.
    Yi Y; Coropceanu V; Brédas JL
    J Chem Phys; 2012 Oct; 137(16):164303. PubMed ID: 23126706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-phonon relaxation and excited electron distribution in zinc oxide and anatase.
    Zhukov VP; Tyuterev VG; Chulkov EV
    J Phys Condens Matter; 2012 Oct; 24(40):405802. PubMed ID: 22967967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio method for calculating electron-phonon scattering times in semiconductors: application to GaAs and GaP.
    Sjakste J; Vast N; Tyuterev V
    Phys Rev Lett; 2007 Dec; 99(23):236405. PubMed ID: 18233390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot phonon and carrier relaxation in Si(100) determined by transient extreme ultraviolet spectroscopy.
    Cushing SK; Zürch M; Kraus PM; Carneiro LM; Lee A; Chang HT; Kaplan CJ; Leone SR
    Struct Dyn; 2018 Sep; 5(5):054302. PubMed ID: 30246050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of large electron-phonon interaction effect on phonon heat transport.
    Zhou J; Shin HD; Chen K; Song B; Duncan RA; Xu Q; Maznev AA; Nelson KA; Chen G
    Nat Commun; 2020 Nov; 11(1):6040. PubMed ID: 33247148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Electron-Phonon Interactions in Lead Halide Perovskites Using Time-Resolved THz Spectroscopy.
    Zhao D; Hu H; Haselsberger R; Marcus RA; Michel-Beyerle ME; Lam YM; Zhu JX; La-O-Vorakiat C; Beard MC; Chia EEM
    ACS Nano; 2019 Aug; 13(8):8826-8835. PubMed ID: 31348643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-phonon coupling from finite differences.
    Monserrat B
    J Phys Condens Matter; 2018 Feb; 30(8):083001. PubMed ID: 29328057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
    Park CH; Bonini N; Sohier T; Samsonidze G; Kozinsky B; Calandra M; Mauri F; Marzari N
    Nano Lett; 2014 Mar; 14(3):1113-9. PubMed ID: 24524418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-phonon coupling in crystalline organic semiconductors: microscopic evidence for nonpolaronic charge carriers.
    Vukmirović N; Bruder C; Stojanović VM
    Phys Rev Lett; 2012 Sep; 109(12):126407. PubMed ID: 23005969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of strong momentum-dependent electron-phonon coupling in a metal.
    Mo M; Tamm A; Metsanurk E; Chen Z; Wang L; Frost M; Hartley NJ; Ji F; Pandolfi S; Reid AH; Sun P; Shen X; Wang Y; Wang X; Glenzer S; Correa AA
    Sci Adv; 2024 Mar; 10(11):eadk9051. PubMed ID: 38478610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium Lattice Dynamics in Monolayer MoS
    Caruso F
    J Phys Chem Lett; 2021 Feb; 12(6):1734-1740. PubMed ID: 33569950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy.
    Yang JA; Parham S; Dessau D; Reznik D
    Sci Rep; 2017 Jan; 7():40876. PubMed ID: 28102368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.