These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29341921)

  • 21. Experimental determination of the velocity distribution in USP Apparatus 1 (basket apparatus) using Particle Image Velocimetry (PIV).
    Sirasitthichoke C; Perivilli S; Liddell MR; Armenante PM
    Int J Pharm X; 2021 Dec; 3():100078. PubMed ID: 34027384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the Hydrodynamics in a Miniaturized Dissolution Apparatus.
    Johansson KE; Plum J; Mosleh M; Madsen CM; Rades T; Müllertz A
    J Pharm Sci; 2018 Apr; 107(4):1095-1103. PubMed ID: 29233728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4).
    Yoshida H; Kuwana A; Shibata H; Izutsu K; Goda Y
    Pharm Res; 2016 Jun; 33(6):1327-36. PubMed ID: 26869175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational fluid dynamics simulation of hydrodynamics in USP apparatus 3-the influence of dip rate.
    Perivilli S; Kakhi M; Stippler E
    Pharm Res; 2015 Apr; 32(4):1304-15. PubMed ID: 25407541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the effect of solubility and density gradients on local hydrodynamics and drug dissolution in the USP 4 dissolution apparatus.
    D'Arcy DM; Liu B; Corrigan OI
    Int J Pharm; 2011 Oct; 419(1-2):175-85. PubMed ID: 21843609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability.
    D'Arcy DM; Corrigan OI; Healy AM
    J Pharm Pharmacol; 2005 Oct; 57(10):1243-50. PubMed ID: 16259752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation.
    McCarthy CA; Faisal W; O'Shea JP; Murphy C; Ahern RJ; Ryan KB; Griffin BT; Crean AM
    J Control Release; 2017 Mar; 250():86-95. PubMed ID: 28132935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering tools for understanding the hydrodynamics of dissolution tests.
    Kukura J; Arratia PE; Szalai ES; Muzzio FJ
    Drug Dev Ind Pharm; 2003 Feb; 29(2):231-9. PubMed ID: 12648020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Velocity distribution and shear rate variability resulting from changes in the impeller location in the USP dissolution testing apparatus II.
    Bai G; Armenante PM
    Pharm Res; 2008 Feb; 25(2):320-36. PubMed ID: 18040760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is the use of a 200 ml vessel suitable for dissolution of low dose drug products?
    Crail DJ; Tunis A; Dansereau R
    Int J Pharm; 2004 Jan; 269(1):203-9. PubMed ID: 14698592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive Drug Release Modeling Across Dissolution Apparatuses I and II using Computational Fluid Dynamics.
    Kubinski AM; Shivkumar G; Georgi RA; George S; Reynolds J; Sosa RD; Ju TR
    J Pharm Sci; 2023 Mar; 112(3):808-819. PubMed ID: 36336104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Approach for the Application of USP Apparatus 3 in Dissolution Tests: Case Studies of Three Antihypertensive Immediate-Release Tablets.
    Espíndola B; Bortolon FF; Pinto JMO; Pezzini BR; Stulzer HK
    AAPS PharmSciTech; 2018 Oct; 19(7):2866-2874. PubMed ID: 29934804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and computational determination of blend time in USP Dissolution Testing Apparatus II.
    Bai G; Armenante PM; Plank RV
    J Pharm Sci; 2007 Nov; 96(11):3072-86. PubMed ID: 17828739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissolution of prednisone tablets in the presence of an arch-shaped fiber optic probe in a USP dissolution testing apparatus 2.
    Zhang Y; Bredael G; Armenante PM
    J Pharm Sci; 2013 Aug; 102(8):2718-29. PubMed ID: 23861178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of hydrodynamic environment on tablet dissolution using flow-through dissolution apparatus.
    Wu Y; Ghaly ES
    P R Health Sci J; 2006 Mar; 25(1):75-83. PubMed ID: 16883682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulating the hydrodynamic conditions in the United States Pharmacopeia paddle dissolution apparatus.
    McCarthy LG; Kosiol C; Healy AM; Bradley G; Sexton JC; Corrigan OI
    AAPS PharmSciTech; 2003; 4(2):E22. PubMed ID: 12916904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modeling of the fluid dynamics in the flow-through cell.
    Kakhi M
    Int J Pharm; 2009 Jul; 376(1-2):22-40. PubMed ID: 19375490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A better dissolution method for ranitidine tablets USP.
    Cappola ML
    Pharm Dev Technol; 2001; 6(1):11-7. PubMed ID: 11247270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Disintegration Tester for Solid Dosage Forms Enabling Adjustable Hydrodynamics.
    Kindgen S; Rach R; Nawroth T; Abrahamsson B; Langguth P
    J Pharm Sci; 2016 Aug; 105(8):2402-9. PubMed ID: 27422086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic dissolution rate modeling for the pharmacopoeia apparatus rotating disk compared to flow channel method.
    Mattusch AM; Schaldach G; Bartsch J; Thommes M
    Pharm Dev Technol; 2024 Apr; 29(4):281-290. PubMed ID: 38501605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.