These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 29342146)

  • 21. Cholinergic signals in mouse barrel cortex during active whisker sensing.
    Eggermann E; Kremer Y; Crochet S; Petersen CCH
    Cell Rep; 2014 Dec; 9(5):1654-1660. PubMed ID: 25482555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory of hierarchically organized neuronal oscillator dynamics that mediate rodent rhythmic whisking.
    Golomb D; Moore JD; Fassihi A; Takatoh J; Prevosto V; Wang F; Kleinfeld D
    Neuron; 2022 Nov; 110(22):3833-3851.e22. PubMed ID: 36113472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons.
    Béhuret S; Deleuze C; Bal T
    Front Neural Circuits; 2015; 9():80. PubMed ID: 26733818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Closed-Loop Control of Active Sensing Movements Regulates Sensory Slip.
    Biswas D; Arend LA; Stamper SA; Vágvölgyi BP; Fortune ES; Cowan NJ
    Curr Biol; 2018 Dec; 28(24):4029-4036.e4. PubMed ID: 30503617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and spatial characteristics of vibrissa responses to motor commands.
    Simony E; Bagdasarian K; Herfst L; Brecht M; Ahissar E; Golomb D
    J Neurosci; 2010 Jun; 30(26):8935-52. PubMed ID: 20592215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tactile object localization by anticipatory whisker motion.
    Voigts J; Herman DH; Celikel T
    J Neurophysiol; 2015 Jan; 113(2):620-32. PubMed ID: 25339711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visuo-Motor Feedback Modulates Neural Activities in the Medulla of the Honeybee,
    Rusch C; Alonso San Alberto D; Riffell JA
    J Neurosci; 2021 Apr; 41(14):3192-3203. PubMed ID: 33608383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sniffing and whisking in rodents.
    Deschênes M; Moore J; Kleinfeld D
    Curr Opin Neurobiol; 2012 Apr; 22(2):243-50. PubMed ID: 22177596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [What the whiskers tell the tactile brain].
    Estebanez L; El Boustani S; Destexhe A; Shulz DE
    Med Sci (Paris); 2014 Jan; 30(1):93-8. PubMed ID: 24472465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Choice from Competing Mechanosensory and Choice-Memory Cues during Active Tactile Decision Making.
    Campagner D; Evans MH; Chlebikova K; Colins-Rodriguez A; Loft MSE; Fox S; Pettifer D; Humphries MD; Svoboda K; Petersen RS
    J Neurosci; 2019 May; 39(20):3921-3933. PubMed ID: 30850514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A closed-loop neurobotic system for fine touch sensing.
    Bologna LL; Pinoteau J; Passot JB; Garrido JA; Vogel J; Vidal ER; Arleo A
    J Neural Eng; 2013 Aug; 10(4):046019. PubMed ID: 23883543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking.
    O'Connor SM; Berg RW; Kleinfeld D
    J Neurophysiol; 2002 Apr; 87(4):2137-48. PubMed ID: 11929931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking.
    Berg RW; Kleinfeld D
    J Neurophysiol; 2003 Nov; 90(5):2950-63. PubMed ID: 12904336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model.
    Diekman CO; Thomas PJ; Wilson CG
    J Neurophysiol; 2017 Oct; 118(4):2194-2215. PubMed ID: 28724778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation.
    Yang Y; Connolly AT; Shanechi MM
    J Neural Eng; 2018 Dec; 15(6):066007. PubMed ID: 30221624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study.
    Harish O; Golomb D
    J Neurophysiol; 2010 May; 103(5):2684-99. PubMed ID: 20200122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.