These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 29342190)
1. Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. Yang J; Du L; Gong W; Shi S; Sun J; Chen B PLoS One; 2018; 13(1):e0191068. PubMed ID: 29342190 [TBL] [Abstract][Full Text] [Related]
2. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Yang J; Gong W; Shi S; Du L; Sun J; Song S; Chen B; Zhang Z Sci Rep; 2016 Jun; 6():28787. PubMed ID: 27350029 [TBL] [Abstract][Full Text] [Related]
3. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. Yang J; Du L; Gong W; Shi S; Sun J; Chen B Opt Express; 2019 Feb; 27(4):3978-3990. PubMed ID: 30876021 [TBL] [Abstract][Full Text] [Related]
4. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214 [TBL] [Abstract][Full Text] [Related]
5. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001 [TBL] [Abstract][Full Text] [Related]
6. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice. Yang J; Sun J; Du L; Chen B; Zhang Z; Shi S; Gong W Opt Express; 2017 Feb; 25(4):3743-3755. PubMed ID: 28241586 [TBL] [Abstract][Full Text] [Related]
7. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data. Zhou K; Cheng T; Zhu Y; Cao W; Ustin SL; Zheng H; Yao X; Tian Y Front Plant Sci; 2018; 9():964. PubMed ID: 30026750 [TBL] [Abstract][Full Text] [Related]
8. Assessing different regression algorithms for paddy rice leaf nitrogen concentration estimations from the first-derivative fluorescence spectrum. Yang J; Du L; Cheng Y; Shi S; Xiang C; Sun J; Chen B Opt Express; 2020 Jun; 28(13):18728-18741. PubMed ID: 32672167 [TBL] [Abstract][Full Text] [Related]
9. Development of an Apparatus for Crop-Growth Monitoring and Diagnosis. Ni J; Zhang J; Wu R; Pang F; Zhu Y Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30227614 [TBL] [Abstract][Full Text] [Related]
10. Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring. Shen C; Feng Z; Zhou D R Soc Open Sci; 2018 Jun; 5(6):180485. PubMed ID: 30110456 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610 [TBL] [Abstract][Full Text] [Related]
12. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice]. Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640 [TBL] [Abstract][Full Text] [Related]
13. [Monitoring leaf nitrogen concentration and nitrogen accumulation of double cropping rice based on crop growth monitoring and diagnosis apparatus]. Li YD; Ye C; Cao ZS; Sun BF; Shu SF; Huang JB; Tian YC; He Y Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3040-3050. PubMed ID: 33345505 [TBL] [Abstract][Full Text] [Related]
14. Monitoring ratio of carbon to nitrogen (C/N) in wheat and barley leaves by using spectral slope features with branch-and-bound algorithm. Xu X; Yang G; Yang X; Li Z; Feng H; Xu B; Zhao X Sci Rep; 2018 Jul; 8(1):10034. PubMed ID: 29968798 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters. Sun T; Li Z; Wang Z; Liu Y; Zhu Z; Zhao Y; Xie W; Cui S; Chen G; Yang W; Zhang Z; Zhang F Plants (Basel); 2024 Jan; 13(1):. PubMed ID: 38202447 [TBL] [Abstract][Full Text] [Related]
16. Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis. Li H; Lin W; Pang F; Jiang X; Cao W; Zhu Y; Ni J Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443796 [TBL] [Abstract][Full Text] [Related]
17. Estimating leaf nitrogen concentration based on the combination with fluorescence spectrum and first-derivative. Yang J; Du L; Gong W; Shi S; Sun J R Soc Open Sci; 2020 Feb; 7(2):191941. PubMed ID: 32257346 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Vertical Leaf Nitrogen Distribution Within a Rice Canopy Based on Hyperspectral Data. He J; Zhang X; Guo W; Pan Y; Yao X; Cheng T; Zhu Y; Cao W; Tian Y Front Plant Sci; 2019; 10():1802. PubMed ID: 32117352 [TBL] [Abstract][Full Text] [Related]
19. [The estimation model of rice leaf area index using hyperspectral data based on support vector machine]. Yang XH; Huang JF; Wang XZ; Wang FM Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1837-41. PubMed ID: 18975815 [TBL] [Abstract][Full Text] [Related]
20. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]