BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 29342317)

  • 1. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.
    Guntur AR; Gerencser AA; Le PT; DeMambro VE; Bornstein SA; Mookerjee SA; Maridas DE; Clemmons DE; Brand MD; Rosen CJ
    J Bone Miner Res; 2018 Jun; 33(6):1052-1065. PubMed ID: 29342317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6.
    Wang J; Guan X; Guo F; Zhou J; Chang A; Sun B; Cai Y; Ma Z; Dai C; Li X; Wang B
    Cell Death Dis; 2013 Oct; 4(10):e845. PubMed ID: 24113179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice.
    Fujiwara M; Tian L; Le PT; DeMambro VE; Becker KA; Rosen CJ; Guntur AR
    J Biol Chem; 2019 Aug; 294(34):12683-12694. PubMed ID: 31266807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.
    Guntur AR; Le PT; Farber CR; Rosen CJ
    Endocrinology; 2014 May; 155(5):1589-95. PubMed ID: 24437492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation.
    Shares BH; Busch M; White N; Shum L; Eliseev RA
    J Biol Chem; 2018 Oct; 293(41):16019-16027. PubMed ID: 30150300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells.
    Bäckesjö CM; Li Y; Lindgren U; Haldosén LA
    J Bone Miner Res; 2006 Jul; 21(7):993-1002. PubMed ID: 16813520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glut1 expression is increased by p53 reduction to switch metabolism to glycolysis during osteoblast differentiation.
    Ohnishi T; Kusuyama J; Bandow K; Matsuguchi T
    Biochem J; 2020 May; 477(10):1795-1811. PubMed ID: 32242617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cellular energy metabolism: the Crabtree effect.
    Sussman I; Erecińska M; Wilson DF
    Biochim Biophys Acta; 1980 Jul; 591(2):209-23. PubMed ID: 7397121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions.
    Keuper M; Jastroch M; Yi CX; Fischer-Posovszky P; Wabitsch M; Tschöp MH; Hofmann SM
    FASEB J; 2014 Feb; 28(2):761-70. PubMed ID: 24200885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast differentiation is functionally associated with decreased AMP kinase activity.
    Kasai T; Bandow K; Suzuki H; Chiba N; Kakimoto K; Ohnishi T; Kawamoto S; Nagaoka E; Matsuguchi T
    J Cell Physiol; 2009 Dec; 221(3):740-9. PubMed ID: 19725053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux analysis of mitochondrial uncoupling in 3T3-L1 adipocytes.
    Si Y; Shi H; Lee K
    PLoS One; 2009 Sep; 4(9):e7000. PubMed ID: 19746157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.
    Yang M; Chadwick AE; Dart C; Kamishima T; Quayle JM
    PLoS One; 2017; 12(5):e0177951. PubMed ID: 28542339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the P2Y13 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes.
    Biver G; Wang N; Gartland A; Orriss I; Arnett TR; Boeynaems JM; Robaye B
    Stem Cells; 2013 Dec; 31(12):2747-58. PubMed ID: 23629754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressing the activity of ERRalpha in 3T3-L1 adipocytes reduces mitochondrial biogenesis but enhances glycolysis and basal glucose uptake.
    Nie Y; Wong C
    J Cell Mol Med; 2009 Sep; 13(9B):3051-60. PubMed ID: 18544047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Metabolism During Osteogenic Differentiation: The Role of Akt.
    Smith CO; Eliseev RA
    Stem Cells Dev; 2021 Feb; 30(3):149-162. PubMed ID: 33307974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells.
    Bäckesjö CM; Li Y; Lindgren U; Haldosén LA
    Cells Tissues Organs; 2009; 189(1-4):93-7. PubMed ID: 18728353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts.
    Komarova SV; Ataullakhanov FI; Globus RK
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C1220-9. PubMed ID: 11003602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.
    Zhang M; Qin ZY; Dai YM; Wang YM; Zhu GZ; Zhao YP; Ji CB; Zhu JG; Shi CM; Qiu J; Cao XG; Guo XR
    Cell Biochem Biophys; 2014 Sep; 70(1):667-75. PubMed ID: 24771405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloid Elf-1-like factor stimulates adipogenic differentiation through the induction of peroxisome proliferator-activated receptor γ expression in bone marrow.
    Baek K; Cho JY; Hwang HR; Kwon A; Lee HL; Park HJ; Qadir AS; Ryoo HM; Woo KM; Baek JH
    J Cell Physiol; 2012 Nov; 227(11):3603-12. PubMed ID: 22307523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.