These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29342886)

  • 41. Versatile ferrous oxidation-xylenol orange assay for high-throughput screening of lipoxygenase activity.
    Chrisnasari R; Ewing TA; Hilgers R; van Berkel WJH; Vincken JP; Hennebelle M
    Appl Microbiol Biotechnol; 2024 Mar; 108(1):266. PubMed ID: 38498184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatic synthesis of vanillin.
    van den Heuvel RH; Fraaije MW; Laane C; van Berkel WJ
    J Agric Food Chem; 2001 Jun; 49(6):2954-8. PubMed ID: 11409992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemoenzymatic Synthesis of 2-Aryl Thiazolines from 4-Hydroxybenzaldehydes Using Vanillyl Alcohol Oxidases.
    Zhang H; Xie S; Yang J; Ye N; Gao F; Gallou F; Gao L; Lei X
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202405833. PubMed ID: 38748747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Stability and catalytic properties of o-diphenol oxidase. 2. Oxidation of monophenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):16-21. PubMed ID: 3080836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols.
    Romero E; Ferreira P; Martínez AT; Martínez MJ
    Biochim Biophys Acta; 2009 Apr; 1794(4):689-97. PubMed ID: 19110079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins.
    Goldfeder M; Kanteev M; Isaschar-Ovdat S; Adir N; Fishman A
    Nat Commun; 2014 Jul; 5():4505. PubMed ID: 25074014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-acetyl-6-hydroxytryptophan oxidase, a developmentally controlled phenol oxidase from Aspergillus nidulans.
    Birse CE; Clutterbuck AJ
    J Gen Microbiol; 1990 Sep; 136(9):1725-30. PubMed ID: 2126551
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification and characterization of a novel alcohol oxidase from Paenibacillus sp. AIU 311.
    Isobe K; Kato A; Sasaki Y; Suzuki S; Kataoka M; Ogawa J; Iwasaki A; Hasegawa J; Shimizu S
    J Biosci Bioeng; 2007 Aug; 104(2):124-8. PubMed ID: 17884657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.
    Zafred D; Steiner B; Teufelberger AR; Hromic A; Karplus PA; Schofield CJ; Wallner S; Macheroux P
    FEBS J; 2015 Aug; 282(16):3060-74. PubMed ID: 25619330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
    Uluisik R; Romero E; Gadda G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1470-1478. PubMed ID: 28843728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1.
    Jin J; Mazon H; van den Heuvel RH; Janssen DB; Fraaije MW
    FEBS J; 2007 May; 274(9):2311-21. PubMed ID: 17419730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relative timing of hydrogen and proton transfers in the reaction of flavin oxidation catalyzed by choline oxidase.
    Gannavaram S; Gadda G
    Biochemistry; 2013 Feb; 52(7):1221-6. PubMed ID: 23339467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The substrate tolerance of alcohol oxidases.
    Pickl M; Fuchs M; Glueck SM; Faber K
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6617-42. PubMed ID: 26153139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of acyl-CoA oxidase by phenol and its implication in measurement of the enzyme activity via the peroxidase-coupled assay system.
    Gopalan KV; Srivastava DK
    Anal Biochem; 1997 Jul; 250(1):44-50. PubMed ID: 9234897
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The VAO/PCMH flavoprotein family.
    Ewing TA; Fraaije MW; Mattevi A; van Berkel WJH
    Arch Biochem Biophys; 2017 Oct; 632():104-117. PubMed ID: 28669855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase.
    Stenberg K; Clausen T; Lindqvist Y; Macheroux P
    Eur J Biochem; 1995 Mar; 228(2):408-16. PubMed ID: 7705356
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Action of tyrosinase on ortho-substituted phenols: possible influence on browning and melanogenesis.
    Garcia-Molina Mdel M; Muñoz-Muñoz JL; Garcia-Molina F; García-Ruiz PA; Garcia-Canovas F
    J Agric Food Chem; 2012 Jun; 60(25):6447-53. PubMed ID: 22670832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.
    Fenoll LG; Rodríguez-López JN; Varón R; García-Ruiz PA; García-Cánovas F; Tudela J
    Biol Chem; 2000 Apr; 381(4):313-20. PubMed ID: 10839460
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alcohol oxidation by flavoenzymes.
    Romero E; Gadda G
    Biomol Concepts; 2014 Aug; 5(4):299-318. PubMed ID: 25372761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.