These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29343174)

  • 41. Cytoskeletal dynamics during in vitro neurogenesis of induced pluripotent stem cells (iPSCs).
    Compagnucci C; Piermarini E; Sferra A; Borghi R; Niceforo A; Petrini S; Piemonte F; Bertini E
    Mol Cell Neurosci; 2016 Dec; 77():113-124. PubMed ID: 27756615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strategies to generate induced pluripotent stem cells.
    Hayes M; Zavazava N
    Methods Mol Biol; 2013; 1029():77-92. PubMed ID: 23756943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming.
    Liu Z; Skamagki M; Kim K; Zhao R
    Stem Cell Reports; 2015 Dec; 5(6):1119-1127. PubMed ID: 26651605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reprogramming of Fibroblasts to Neural Stem Cells by a Chemical Cocktail.
    Wei C; Xiong S; Cheng L
    Methods Mol Biol; 2020; 2117():265-270. PubMed ID: 31960385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the Reprogramming Efficiency of Somatic Cells to Induced Pluripotent Stem Cells.
    Hu C; Li LJ
    Crit Rev Eukaryot Gene Expr; 2015; 25(4):323-34. PubMed ID: 26559093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
    Trevisan M; Desole G; Costanzi G; Lavezzo E; Palù G; Barzon L
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117672
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MiR-134-Mbd3 axis regulates the induction of pluripotency.
    Zhang L; Zheng Y; Sun Y; Zhang Y; Yan J; Chen Z; Jiang H
    J Cell Mol Med; 2016 Jun; 20(6):1150-8. PubMed ID: 26929159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification of functional reprogramming factors in mammalian cell using FLAG -Tag.
    Han MJ; Kim HR; O'Reilly C; Kim CH
    Biochem Biophys Res Commun; 2017 Oct; 492(2):154-160. PubMed ID: 28802578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M; Tang S; Li K; Ding S
    Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation and Differentiation of Self-Renewable Neural Stem Cells from Marmoset-Induced Pluripotent Stem Cells.
    Hong H; Roy-Choudhury G; Kim J; Daadi MM
    Methods Mol Biol; 2019; 1919():199-204. PubMed ID: 30656631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.
    Choi HW; Hong YJ; Kim JS; Song H; Cho SG; Bae H; Kim C; Byun SJ; Do JT
    PLoS One; 2017; 12(1):e0170735. PubMed ID: 28141814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E
    Methods Mol Biol; 2017; 1538():53-66. PubMed ID: 27943183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse.
    Woltjen K; Kim SI; Nagy A
    Methods Mol Biol; 2016; 1357():1-22. PubMed ID: 26126450
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.
    Brix J; Zhou Y; Luo Y
    J Genet Genomics; 2015 Dec; 42(12):661-70. PubMed ID: 26743984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells.
    Su H; Wang L; Huang W; Qin D; Cai J; Yao X; Feng C; Li Z; Wang Y; So KF; Pan G; Wu W; Pei D
    Stem Cell Res; 2013 May; 10(3):338-48. PubMed ID: 23416351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enrichment of Oligodendrocyte Progenitors from Differentiated Neural Precursors by Clonal Sphere Preparations.
    Umebayashi D; Coles B; van der Kooy D
    Stem Cells Dev; 2016 May; 25(9):712-28. PubMed ID: 26972950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using Oct4:MerCreMer Lineage Tracing to Monitor Endogenous Oct4 Expression During the Reprogramming of Fibroblasts into Induced Pluripotent Stem Cells (iPSCs).
    Greder LV; Post J; Dutton JR
    Methods Mol Biol; 2016; 1357():97-110. PubMed ID: 25687297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induced pluripotent stem cell technology: A window for studying the pathogenesis of acquired aplastic anemia and possible applications.
    Elbadry MI; Espinoza JL; Nakao S
    Exp Hematol; 2017 May; 49():9-18. PubMed ID: 28062362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stiffness of Hydrogels Regulates Cellular Reprogramming Efficiency Through Mesenchymal-to-Epithelial Transition and Stemness Markers.
    Choi B; Park KS; Kim JH; Ko KW; Kim JS; Han DK; Lee SH
    Macromol Biosci; 2016 Feb; 16(2):199-206. PubMed ID: 26439948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small molecule-based lineage switch of human adipose-derived stem cells into neural stem cells and functional GABAergic neurons.
    Park J; Lee N; Lee J; Choe EK; Kim MK; Lee J; Byun MS; Chon MW; Kim SW; Lee CJ; Kim JH; Kwon JS; Chang MS
    Sci Rep; 2017 Aug; 7(1):10166. PubMed ID: 28860504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.