These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
23. Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients. Kaderka R; Gillespie EF; Mundt RC; Bryant AK; Sanudo-Thomas CB; Harrison AL; Wouters EL; Moiseenko V; Moore KL; Atwood TF; Murphy JD Radiother Oncol; 2019 Feb; 131():215-220. PubMed ID: 30107948 [TBL] [Abstract][Full Text] [Related]
24. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT. Feng Y; Kawrakow I; Olsen J; Parikh PJ; Noel C; Wooten O; Du D; Mutic S; Hu Y J Appl Clin Med Phys; 2016 Mar; 17(2):441-460. PubMed ID: 27074465 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Isambert A; Dhermain F; Bidault F; Commowick O; Bondiau PY; Malandain G; Lefkopoulos D Radiother Oncol; 2008 Apr; 87(1):93-9. PubMed ID: 18155791 [TBL] [Abstract][Full Text] [Related]
26. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis. Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672 [TBL] [Abstract][Full Text] [Related]
27. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context. Dolz J; Laprie A; Ken S; Leroy HA; Reyns N; Massoptier L; Vermandel M Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):43-51. PubMed ID: 26206715 [TBL] [Abstract][Full Text] [Related]
28. Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study. Buchner JA; Kofler F; Etzel L; Mayinger M; Christ SM; Brunner TB; Wittig A; Menze B; Zimmer C; Meyer B; Guckenberger M; Andratschke N; El Shafie RA; Debus J; Rogers S; Riesterer O; Schulze K; Feldmann HJ; Blanck O; Zamboglou C; Ferentinos K; Wolff R; Eitz KA; Combs SE; Bernhardt D; Wiestler B; Peeken JC Radiother Oncol; 2023 Jan; 178():109425. PubMed ID: 36442609 [TBL] [Abstract][Full Text] [Related]
30. Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach. van der Heyden B; Wohlfahrt P; Eekers DBP; Richter C; Terhaag K; Troost EGC; Verhaegen F Sci Rep; 2019 Mar; 9(1):4126. PubMed ID: 30858409 [TBL] [Abstract][Full Text] [Related]
31. The feasibility of atlas-based automatic segmentation of MRI for H&N radiotherapy planning. Wardman K; Prestwich RJ; Gooding MJ; Speight RJ J Appl Clin Med Phys; 2016 Jul; 17(4):146-154. PubMed ID: 27455480 [TBL] [Abstract][Full Text] [Related]
32. Perfusion magnetic resonance imaging in contouring of glioblastoma patients: Preliminary experience from a single institution. Munshi A; Ganesh T; Gupta RK; Vaishya S; Patir R; Sarkar B; Khataniar N; Bansal K; Rastogi K; Mohanti BK J Cancer Res Ther; 2020; 16(6):1488-1494. PubMed ID: 33342818 [TBL] [Abstract][Full Text] [Related]
33. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
34. Segmentation editing improves efficiency while reducing inter-expert variation and maintaining accuracy for normal brain tissues in the presence of space-occupying lesions. Deeley MA; Chen A; Datteri RD; Noble J; Cmelak A; Donnelly E; Malcolm A; Moretti L; Jaboin J; Niermann K; Yang ES; Yu DS; Dawant BM Phys Med Biol; 2013 Jun; 58(12):4071-97. PubMed ID: 23685866 [TBL] [Abstract][Full Text] [Related]
35. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients. Sjöberg C; Lundmark M; Granberg C; Johansson S; Ahnesjö A; Montelius A Radiat Oncol; 2013 Oct; 8():229. PubMed ID: 24090107 [TBL] [Abstract][Full Text] [Related]
36. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT. Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663 [TBL] [Abstract][Full Text] [Related]
39. Magnetic resonance imaging-based target volume delineation in radiation therapy treatment planning for brain tumors using localized region-based active contour. Aslian H; Sadeghi M; Mahdavi SR; Babapour Mofrad F; Astarakee M; Khaledi N; Fadavi P Int J Radiat Oncol Biol Phys; 2013 Sep; 87(1):195-201. PubMed ID: 23920396 [TBL] [Abstract][Full Text] [Related]
40. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer. Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]