BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 29343788)

  • 1. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca.
    Suzuki S; Endoh R; Manabe RI; Ohkuma M; Hirakawa Y
    Sci Rep; 2018 Jan; 8(1):940. PubMed ID: 29343788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae.
    Yan D; Wang Y; Murakami T; Shen Y; Gong J; Jiang H; Smith DR; Pombert JF; Dai J; Wu Q
    Sci Rep; 2015 Sep; 5():14465. PubMed ID: 26403826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of plastid 16S rRNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta).
    Tartar A; Boucias DG; Becnel JJ; Adams BJ
    Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):1719-23. PubMed ID: 14657099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome.
    Tartar A; Boucias DG
    FEMS Microbiol Lett; 2004 Apr; 233(1):153-7. PubMed ID: 15043882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured.
    de Koning AP; Keeling PJ
    BMC Biol; 2006 Apr; 4():12. PubMed ID: 16630350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome sequencing of Prototheca zopfii genotypes 1 and 2 provides evidence of a severe reduction in organellar genomes.
    Severgnini M; Lazzari B; Capra E; Chessa S; Luini M; Bordoni R; Castiglioni B; Ricchi M; Cremonesi P
    Sci Rep; 2018 Oct; 8(1):14637. PubMed ID: 30279542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing and Analysis of the Complete Organellar Genomes of
    Bakuła Z; Gromadka R; Gawor J; Siedlecki P; Pomorski JJ; Maciszewski K; Gromadka A; Karnkowska A; Jagielski T
    Front Plant Sci; 2020; 11():1296. PubMed ID: 32983192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.
    Hadariová L; Vesteg M; Hampl V; Krajčovič J
    Curr Genet; 2018 Apr; 64(2):365-387. PubMed ID: 29026976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Plastid Genome of Polytoma uvella Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles.
    Figueroa-Martinez F; Nedelcu AM; Smith DR; Reyes-Prieto A
    Plant Physiol; 2017 Feb; 173(2):932-943. PubMed ID: 27932420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new lineage of non-photosynthetic green algae with extreme organellar genomes.
    Pánek T; Barcytė D; Treitli SC; Záhonová K; Sokol M; Ševčíková T; Zadrobílková E; Jaške K; Yubuki N; Čepička I; Eliáš M
    BMC Biol; 2022 Mar; 20(1):66. PubMed ID: 35296310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes.
    Fan W; Guo W; Van Etten JL; Mower JP
    Sci Rep; 2017 Aug; 7(1):10101. PubMed ID: 28855622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When the lights go out: the evolutionary fate of free-living colorless green algae.
    Figueroa-Martinez F; Nedelcu AM; Smith DR; Adrian RP
    New Phytol; 2015 May; 206(3):972-82. PubMed ID: 26042246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys.
    Ravin NV; Gruzdev EV; Beletsky AV; Mazur AM; Prokhortchouk EB; Filyushin MA; Kochieva EZ; Kadnikov VV; Mardanov AV; Skryabin KG
    BMC Plant Biol; 2016 Nov; 16(Suppl 3):238. PubMed ID: 28105941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga.
    de Koning AP; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1198-205. PubMed ID: 15470248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Happened before Losses of Photosynthesis in Cryptophyte Algae?
    Suzuki S; Matsuzaki R; Yamaguchi H; Kawachi M
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35079797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives.
    Logacheva MD; Schelkunov MI; Shtratnikova VY; Matveeva MV; Penin AA
    Sci Rep; 2016 Jul; 6():30042. PubMed ID: 27452401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex patterns of plastid 16S rRNA gene evolution in nonphotosynthetic green algae.
    Nedelcu AM
    J Mol Evol; 2001 Dec; 53(6):670-9. PubMed ID: 11677627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mitochondrial genome of the entomoparasitic green alga helicosporidium.
    Pombert JF; Keeling PJ
    PLoS One; 2010 Jan; 5(1):e8954. PubMed ID: 20126458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data.
    Ueno R; Urano N; Suzuki M
    FEMS Microbiol Lett; 2003 Jun; 223(2):275-80. PubMed ID: 12829298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.